Source code for hnn_core.viz

"""Visualization functions."""

# Authors: Mainak Jas <mjas@mgh.harvard.edu>
#          Sam Neymotin <samnemo@gmail.com>
#          Christopher Bailey <cjb@cfin.au.dk>

import numpy as np
from itertools import cycle
import colorsys
import warnings
from .externals.mne import _validate_type


def _lighten_color(color, amount=0.5):
    import matplotlib.colors as mc
    try:
        c = mc.cnames[color]
    except:
        c = color
    c = colorsys.rgb_to_hls(*mc.to_rgb(c))
    return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])


def _get_plot_data_trange(times, data, tmin=None, tmax=None):
    """Get slices of times and data based on tmin and tmax"""
    if isinstance(times, list):
        times = np.array(times)
    if isinstance(data, list):
        data = np.array(data)
    plot_tmin = times[0]
    if tmin is not None:
        plot_tmin = max(tmin, plot_tmin)
    plot_tmax = times[-1]
    if tmax is not None:
        plot_tmax = min(tmax, plot_tmax)

    mask = np.logical_and(times >= plot_tmin, times < plot_tmax)

    return data[mask], times[mask]


def _decimate_plot_data(decim, data, times, sfreq=None):
    from scipy.signal import decimate
    if not isinstance(decim, list):
        decim = [decim]

    for dec in decim:
        if not isinstance(dec, int) or dec < 1:
            raise ValueError('each decimation factor must be a positive int, '
                             f'but {dec} is a {type(dec)}')
        data = decimate(data, dec)
        times = times[::dec]

    if sfreq is None:
        return data, times
    else:
        sfreq /= np.prod(decim)
        return data, times, sfreq


def plt_show(show=True, fig=None, **kwargs):
    """Show a figure while suppressing warnings.

    NB copied from :func:`mne.viz.utils.plt_show`.

    Parameters
    ----------
    show : bool
        Show the figure.
    fig : instance of Figure | None
        If non-None, use fig.show().
    **kwargs : dict
        Extra arguments for :func:`matplotlib.pyplot.show`.
    """
    from matplotlib import get_backend
    import matplotlib.pyplot as plt
    if show and get_backend() != 'agg':
        (fig or plt).show(**kwargs)


[docs]def plot_laminar_lfp(times, data, contact_labels, tmin=None, tmax=None, ax=None, decim=None, color='cividis', voltage_offset=50, voltage_scalebar=200, show=True): """Plot laminar extracellular electrode array voltage time series. Parameters ---------- times : array-like, shape (n_times,) Sampling times (in ms). data : Two-dimensional Numpy array The extracellular voltages as an (n_contacts, n_times) array. ax : instance of matplotlib figure | None The matplotlib axis decim : int | list of int | None (default) Optional (integer) factor by which to decimate the raw dipole traces. The SciPy function :func:`~scipy.signal.decimate` is used, which recommends values <13. To achieve higher decimation factors, a list of ints can be provided. These are applied successively. color : str | array of floats | ``matplotlib.colors.ListedColormap`` The colormap to use for plotting. The usual Matplotlib standard colormap strings may be used (e.g., 'jetblue'). A color can also be defined as an RGBA-quadruplet, or an array of RGBA-values (one for each electrode contact trace to plot). An instance of :class:`~matplotlib.colors.ListedColormap` may also be provided. voltage_offset : float | None (optional) Amount to offset traces by on the voltage-axis. Useful for plotting laminar arrays. voltage_scalebar : float | None (optional) Height, in units of uV, of a scale bar to plot in the top-left corner of the plot. contact_labels : list Labels associated with the contacts to plot. Passed as-is to :func:`~matplotlib.axes.Axes.set_yticklabels`. show : bool If True, show the figure Returns ------- fig : instance of plt.fig The matplotlib figure handle into which time series were plotted. """ import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap _validate_type(times, (list, np.ndarray), 'times') _validate_type(data, (list, np.ndarray), 'data') if isinstance(times, list): times = np.array(times) if isinstance(data, list): data = np.array(data) if data.ndim != 2: raise ValueError(f'data must be 2D, got shape {data.shape}') if len(times) != data.shape[1]: raise ValueError(f'length of times ({len(times)}) and data ' f'({len(data)}) do not match') n_contacts = data.shape[0] if color is not None: _validate_type(color, (str, tuple, list, np.ndarray, ListedColormap), 'color') if isinstance(color, (tuple, list)): if (not np.all([isinstance(c, float) for c in color]) or len(color) < 3 or len(color) > 4): raise ValueError( f'color must be length 3 or 4, got {color}') elif isinstance(color, np.ndarray): if (color.shape[0] != n_contacts or (color.shape[1] < 3 or color.shape[1] > 4)): raise ValueError( f'color must be n_contacts x (3 or 4), got {color}') elif isinstance(color, ListedColormap): if color.N != n_contacts: raise ValueError(f'ListedColormap has N={color.N}, but ' f'there are {n_contacts} contacts') elif isinstance(color, str): color = plt.get_cmap(color, len(contact_labels)) if ax is None: _, ax = plt.subplots(1, 1) n_offsets = data.shape[0] trace_offsets = np.zeros((n_offsets, 1)) if voltage_offset is not None: trace_offsets = np.arange(n_offsets)[:, np.newaxis] * voltage_offset for contact_no, trace in enumerate(np.atleast_2d(data)): plot_data = trace plot_times = times if decim is not None: plot_data, plot_times = _decimate_plot_data(decim, plot_data, plot_times) if isinstance(color, np.ndarray): col = color[contact_no] elif isinstance(color, ListedColormap): col = color(contact_no) else: col = color ax.plot(plot_times, plot_data + trace_offsets[contact_no], label=f'C{contact_no}', color=col) # To be removed after deprecation cycle if tmin is not None or tmax is not None: ax.set_xlim(left=tmin, right=tmax) warnings.warn('tmin and tmax are deprecated and will be ' 'removed in future releases of hnn-core. Please' 'use matplotlib plt.xlim to set tmin and tmax.', DeprecationWarning) else: ax.set_xlim(left=times[0], right=times[-1]) if voltage_offset is not None: ax.set_ylim(-voltage_offset, n_offsets * voltage_offset) ylabel = 'Individual contact traces' if len(contact_labels) != n_offsets: raise ValueError(f'contact_labels is length {len(contact_labels)},' f' but {n_offsets} contacts to be plotted') else: trace_ticks = np.arange(0, len(contact_labels) * voltage_offset, voltage_offset) ax.set_yticks(trace_ticks) ax.set_yticklabels(contact_labels) if voltage_scalebar is None: voltage_scalebar = voltage_offset if voltage_scalebar is not None: from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar scalebar = AnchoredSizeBar(ax.transData, 1, f'{voltage_scalebar:.0f} ' + r'$\mu V$', 'upper left', size_vertical=voltage_scalebar, pad=0.1, color='black', label_top=False, frameon=False) ax.add_artist(scalebar) else: ylabel = r'Electric potential ($\mu V$)' ax.ticklabel_format(axis='both', scilimits=(-2, 3)) ax.set_ylabel(ylabel, multialignment='center') ax.set_xlabel('Time (ms)') plt_show(show) return ax.get_figure()
[docs]def plot_dipole(dpl, tmin=None, tmax=None, ax=None, layer='agg', decim=None, color='k', label="average", average=False, show=True): """Simple layer-specific plot function. Parameters ---------- dpl : instance of Dipole | list of Dipole instances The Dipole object. ax : instance of matplotlib figure | None The matplotlib axis layer : str The layer to plot. Can be one of 'agg', 'L2', and 'L5' decim : int or list of int or None (default) Optional (integer) factor by which to decimate the raw dipole traces. The SciPy function :func:`~scipy.signal.decimate` is used, which recommends values <13. To achieve higher decimation factors, a list of ints can be provided. These are applied successively. color : tuple of float | str RGBA value to use for plotting. By default, 'k' (black) label : str Dipole label. Enabled when average=True average : bool If True, render the average across all dpls. show : bool If True, show the figure Returns ------- fig : instance of plt.fig The matplotlib figure handle. """ import matplotlib.pyplot as plt from .dipole import Dipole, average_dipoles layers = layer if isinstance(layer, list) else [layer] if ax is None: _, ax = plt.subplots(len(layers), 1, constrained_layout=True, sharex=True, sharey=True) axes = ax if isinstance(ax, (list, np.ndarray)) else [ax] if isinstance(dpl, Dipole): dpl = [dpl] for this_dpl in dpl: _validate_type(this_dpl, Dipole, 'dpl', 'Dipole, list of Dipole') if average: dpl.append(average_dipoles(dpl)) scale_applied = dpl[0].scale_applied assert len(layers) == len(axes), "ax and layer should have the same size" for layer, ax in zip(layers, axes): for idx, dpl_trial in enumerate(dpl): if dpl_trial.scale_applied != scale_applied: raise RuntimeError('All dipoles must be scaled equally!') if layer in dpl_trial.data.keys(): # extract scaled data and times data = dpl_trial.data[layer] times = dpl_trial.times if decim is not None: data, times = _decimate_plot_data(decim, data, times) if idx == len(dpl) - 1 and average: # the average dpl ax.plot(times, data, color=color, label=label, lw=1.5) else: alpha = 0.5 if average else 1. ax.plot(times, data, color=_lighten_color(color, 0.5), alpha=alpha, lw=1.) # To be removed after deprecation cycle if tmin is not None or tmax is not None: if tmin is not None or tmax is not None: warnings.warn('tmin and tmax are deprecated and will be ' 'removed in future releases of hnn-core. ' 'Please use matplotlib plt.xlim to set tmin' ' and tmax.', DeprecationWarning) ax.set_xlim(left=tmin, right=tmax) else: ax.set_xlim(left=0, right=times[-1]) if average: ax.legend() ax.ticklabel_format(axis='both', scilimits=(-2, 3)) ax.set_xlabel('Time (ms)') if scale_applied == 1: ylabel = 'Dipole moment (nAm)' else: ylabel = 'Dipole moment\n(nAm ' +\ r'$\times$ {:.0f})'.format(scale_applied) ax.set_ylabel(ylabel, multialignment='center') if layer == 'agg': title_str = 'Aggregate (L2/3 + L5)' elif layer == 'L2': title_str = 'L2/3' else: title_str = layer ax.set_title(title_str) plt_show(show) return axes[0].get_figure()
[docs]def plot_spikes_hist(cell_response, trial_idx=None, ax=None, spike_types=None, color=None, invert_spike_types=None, show=True, **kwargs_hist): """Plot the histogram of spiking activity across trials. Parameters ---------- cell_response : instance of CellResponse The CellResponse object from net.cell_response trial_idx : int | list of int | None Index of trials to be plotted. If None, all trials plotted. ax : instance of matplotlib axis | None An axis object from matplotlib. If None, a new figure is created. spike_types: string | list | dictionary | None String input of a valid spike type is plotted individually. | Ex: ``'poisson'``, ``'evdist'``, ``'evprox'``, ... List of valid string inputs will plot each spike type individually. | Ex: ``['poisson', 'evdist']`` Dictionary of valid lists will plot list elements as a group. | Ex: ``{'Evoked': ['evdist', 'evprox'], 'Tonic': ['poisson']}`` If None, all input spike types are plotted individually if any are present. Otherwise spikes from all cells are plotted. Valid strings also include leading characters of spike types | Ex: ``'ev'`` is equivalent to ``['evdist', 'evprox']`` invert_spike_types: string | list | None String input of a valid spike type to be mirrored about the y axis | Ex: ``'evdist'``, ``'evprox'``, ... List of valid spike types to be mirrored about the y axis | Ex: ``['evdist', 'evprox']`` If None, all input spike types are plotted on the same y axis color : str | list of str | dict | None Input defining colors of plotted histograms. If str, all histograms plotted with same color. If list of str provided, histograms for each spike type will be plotted by cycling through colors in the list. If dict, colors must be specified for all spike_types as a key. If a group of spike types is defined by the `spike_types` parameter (see dictionary example for `spike_types`), the name of this group must be used to specify the colors. | Ex: ``{'evdist': 'g', 'evprox': 'r'}``, ``{'Tonic': 'b'}`` If None, default color cycle used. show : bool If True, show the figure. **kwargs_hist : dict Additional keyword arguments to pass to ax.hist. Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt n_trials = len(cell_response.spike_times) if trial_idx is None: trial_idx = list(range(n_trials)) if isinstance(trial_idx, int): trial_idx = [trial_idx] _validate_type(trial_idx, list, 'trial_idx', 'int, list of int') # Extract desired trials if len(cell_response._spike_times[0]) > 0: spike_times = np.concatenate( np.array(cell_response._spike_times, dtype=object)[trial_idx]) spike_types_data = np.concatenate( np.array(cell_response._spike_types, dtype=object)[trial_idx]) else: spike_times = np.array([]) spike_types_data = np.array([]) unique_types = np.unique(spike_types_data) spike_types_mask = {s_type: np.isin(spike_types_data, s_type) for s_type in unique_types} cell_types = ['L5_pyramidal', 'L5_basket', 'L2_pyramidal', 'L2_basket'] input_types = np.setdiff1d(unique_types, cell_types) if isinstance(spike_types, str): spike_types = {spike_types: [spike_types]} if spike_types is None: if any(input_types): spike_types = input_types.tolist() else: spike_types = unique_types.tolist() if isinstance(spike_types, list): spike_types = {s_type: [s_type] for s_type in spike_types} if isinstance(spike_types, dict): for spike_label in spike_types: if not isinstance(spike_types[spike_label], list): raise TypeError(f'spike_types[{spike_label}] must be a list. ' f'Got ' f'{type(spike_types[spike_label]).__name__}.') if not isinstance(spike_types, dict): raise TypeError('spike_types should be str, list, dict, or None') spike_labels = dict() for spike_label, spike_type_list in spike_types.items(): for spike_type in spike_type_list: n_found = 0 for unique_type in unique_types: if unique_type.startswith(spike_type): if unique_type in spike_labels: raise ValueError(f'Elements of spike_types must map to' f' mutually exclusive input types.' f' {unique_type} is found more than' f' once.') spike_labels[unique_type] = spike_label n_found += 1 if n_found == 0: raise ValueError(f'No input types found for {spike_type}') if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True) _validate_type(color, (str, list, dict, None), 'color', 'str, list of str, or dict') if color is None: color_cycle = cycle(['r', 'g', 'b', 'y', 'm', 'c']) elif isinstance(color, str): color_cycle = cycle([color]) elif isinstance(color, list): color_cycle = cycle(color) if len(cell_response.times) > 0: bins = np.linspace(0, cell_response.times[-1], 50) else: bins = np.linspace(0, spike_times[-1], 50) # Create dictionary to aggregate spike times that have the same spike_label spike_type_times = {spike_label: list() for spike_label in np.unique(list(spike_labels.values()))} spike_color = dict() # Store colors specified for each spike_label for spike_type, spike_label in spike_labels.items(): if spike_label not in spike_color: if isinstance(color, dict): if spike_label not in color: raise ValueError( f"'{spike_label}' must be defined in color dictionary") _validate_type(color[spike_label], str, 'Dictionary values of color', 'str') spike_color[spike_label] = color[spike_label] else: spike_color[spike_label] = next(color_cycle) spike_type_times[spike_label].extend( spike_times[spike_types_mask[spike_type]]) if invert_spike_types is None: invert_spike_types = list() else: if not isinstance(invert_spike_types, (str, list)): raise TypeError( "'invert_spike_types' must be a string or a list of strings") if isinstance(invert_spike_types, str): invert_spike_types = [invert_spike_types] # Check that spike types to invert are correctly specified unique_inputs = set(spike_labels.values()) unique_invert_inputs = set(invert_spike_types) check_intersection = unique_invert_inputs.intersection(unique_inputs) if not check_intersection == unique_invert_inputs: raise ValueError( "Elements of 'invert_spike_types' must" "map to valid input types" ) # Initialize secondary axis ax1 = None # Plot aggregated spike_times for spike_label, plot_data in spike_type_times.items(): hist_color = spike_color[spike_label] # Plot on the primary y-axis if spike_label not in invert_spike_types: ax.hist(plot_data, bins, label=spike_label, color=hist_color, **kwargs_hist) # Plot on secondary y-axis else: if ax1 is None: ax1 = ax.twinx() ax1.hist(plot_data, bins, label=spike_label, color=hist_color, **kwargs_hist) # Need to add label for easy removal later # Set the y-limits based on the maximum across both axes if ax1 is not None: ax_ylim = ax.get_ylim()[1] ax1_ylim = ax1.get_ylim()[1] y_max = max(ax_ylim, ax1_ylim) ax.set_ylim(0, y_max) ax1.set_ylim(0, y_max) ax1.invert_yaxis() ax1.set_label("Inverted spike histogram") if len(cell_response.times) > 0: ax.set_xlim(left=0, right=cell_response.times[-1]) else: ax.set_xlim(left=0) ax.set_ylabel("Counts") ax.set_label("Spike histogram") if ax1 is not None: # Combine legends handles, labels = ax.get_legend_handles_labels() handles1, labels1 = ax1.get_legend_handles_labels() handles.extend(handles1) labels.extend(labels1) ax1.legend(handles, labels, loc='upper left') else: ax.legend() plt_show(show) return ax.get_figure()
[docs]def plot_spikes_raster(cell_response, trial_idx=None, ax=None, show=True): """Plot the aggregate spiking activity according to cell type. Parameters ---------- cell_response : instance of CellResponse The CellResponse object from net.cell_response trial_idx : int | list of int | None Index of trials to be plotted. If None, all trials plotted ax : instance of matplotlib axis | None An axis object from matplotlib. If None, a new figure is created. show : bool If True, show the figure. Returns ------- fig : instance of matplotlib Figure The matplotlib figure object. """ import matplotlib.pyplot as plt n_trials = len(cell_response.spike_times) if trial_idx is None: trial_idx = list(range(n_trials)) if isinstance(trial_idx, int): trial_idx = [trial_idx] _validate_type(trial_idx, list, 'trial_idx', 'int, list of int') # Extract desired trials spike_times = np.concatenate( np.array(cell_response._spike_times, dtype=object)[trial_idx]) spike_types = np.concatenate( np.array(cell_response._spike_types, dtype=object)[trial_idx]) spike_gids = np.concatenate( np.array(cell_response._spike_gids, dtype=object)[trial_idx]) cell_types = ['L2_basket', 'L2_pyramidal', 'L5_basket', 'L5_pyramidal'] cell_type_colors = {'L5_pyramidal': 'r', 'L5_basket': 'b', 'L2_pyramidal': 'g', 'L2_basket': 'w'} if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True) events = [] for cell_type in cell_types: cell_type_gids = np.unique(spike_gids[spike_types == cell_type]) cell_type_times, cell_type_ypos = [], [] for gid in cell_type_gids: gid_time = spike_times[spike_gids == gid] cell_type_times.append(gid_time) cell_type_ypos.append(-gid) if cell_type_times: events.append( ax.eventplot(cell_type_times, lineoffsets=cell_type_ypos, color=cell_type_colors[cell_type], label=cell_type, linelengths=5)) else: events.append( ax.eventplot([-1], lineoffsets=[-1], color=cell_type_colors[cell_type], label=cell_type, linelengths=5)) ax.legend(handles=[e[0] for e in events], loc=1) ax.set_facecolor('k') ax.set_xlabel('Time (ms)') ax.get_yaxis().set_visible(False) if len(cell_response.times) > 0: ax.set_xlim(left=0, right=cell_response.times[-1]) else: ax.set_xlim(left=0) ax.set_xlim(left=0) plt_show(show) return ax.get_figure()
[docs]def plot_cells(net, ax=None, show=True): """Plot the cells using Network.pos_dict. Parameters ---------- net : instance of Network The Network object. ax : instance of matplotlib Axes3D | None An axis object from matplotlib. If None, a new figure is created. show : bool If True, show the figure. Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D if ax is None: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') elif not isinstance(ax, Axes3D): raise TypeError("Expected 'ax' to be an instance of Axes3D, " f"but got {type(ax).__name__}") colors = {'L5_pyramidal': 'b', 'L2_pyramidal': 'c', 'L5_basket': 'r', 'L2_basket': 'm'} markers = {'L5_pyramidal': '^', 'L2_pyramidal': '^', 'L5_basket': 'x', 'L2_basket': 'x'} for cell_type in net.cell_types: x = [pos[0] for pos in net.pos_dict[cell_type]] y = [pos[1] for pos in net.pos_dict[cell_type]] z = [pos[2] for pos in net.pos_dict[cell_type]] if cell_type in colors: color = colors[cell_type] marker = markers[cell_type] ax.scatter(x, y, z, c=color, s=50, marker=marker, label=cell_type) if net.rec_arrays: cols = plt.get_cmap('inferno', len(net.rec_arrays) + 2) for ii, (arr_name, arr) in enumerate(net.rec_arrays.items()): x = [p[0] for p in arr.positions] y = [p[1] for p in arr.positions] z = [p[2] for p in arr.positions] ax.scatter(x, y, z, color=cols(ii + 1), s=25, marker='o', label=arr_name) plt.legend(bbox_to_anchor=(-0.15, 1.025), loc="upper left") plt_show(show) return ax.get_figure()
[docs]def plot_tfr_morlet(dpl, freqs, *, n_cycles=7., tmin=None, tmax=None, layer='agg', decim=None, padding='zeros', ax=None, colormap='inferno', colorbar=True, colorbar_inside=False, show=True): """Plot Morlet time-frequency representation of dipole time course Parameters ---------- dpl : instance of Dipole | list of Dipole instances The Dipole object. If a list of dipoles is given, the power is calculated separately for each trial, then averaged. freqs : array Frequency range of interest. n_cycles : float or array of float, default 7.0 Number of cycles. Fixed number or one per frequency. tmin : float or None Start time of plot in milliseconds. If None, plot entire simulation. tmax : float or None End time of plot in milliseconds. If None, plot entire simulation. layer : str, default 'agg' The layer to plot. Can be one of 'agg', 'L2', and 'L5' decim : int or list of int or None (default) Optional (integer) factor by which to decimate the raw dipole traces. The SciPy function :func:`~scipy.signal.decimate` is used, which recommends values <13. To achieve higher decimation factors, a list of ints can be provided. These are applied successively. padding : str or None Optional padding of the dipole time course beyond the plotting limits. Possible values are: 'zeros' for padding with 0's (default), 'mirror' for mirror-image padding. ax : instance of matplotlib figure | None The matplotlib axis colormap : str The name of a matplotlib colormap, e.g., 'viridis'. Default: 'inferno' colorbar : bool If True (default), adjust figure to include colorbar. colorbar_inside: bool, default False Put the color inside the heatmap if True. show : bool If True, show the figure Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from .externals.mne import tfr_array_morlet from .dipole import Dipole if isinstance(dpl, Dipole): dpl = [dpl] if ax is None: fig, ax = plt.subplots(1, 1, constrained_layout=True) scale_applied = dpl[0].scale_applied sfreq = dpl[0].sfreq trial_power = [] for dpl_trial in dpl: if dpl_trial.scale_applied != scale_applied: raise RuntimeError('All dipoles must be scaled equally!') if dpl_trial.sfreq != sfreq: raise RuntimeError('All dipoles must be sampled equally!') data, times = _get_plot_data_trange(dpl_trial.times, dpl_trial.data[layer], tmin, tmax) sfreq = dpl_trial.sfreq if decim is not None: data, times, sfreq = _decimate_plot_data(decim, data, times, sfreq=sfreq) if padding is not None: if not isinstance(padding, str): raise ValueError('padding must be a string (or None)') if padding == 'zeros': data = np.r_[np.zeros((len(data) - 1,)), data.ravel(), np.zeros((len(data) - 1,))] elif padding == 'mirror': data = np.r_[data[-1:0:-1], data, data[-2::-1]] # MNE expects an array of shape (n_trials, n_channels, n_times) data = data[None, None, :] power = tfr_array_morlet(data, sfreq=sfreq, freqs=freqs, n_cycles=n_cycles, output='power') if padding is not None: # get the middle portion after padding power = power[:, :, :, times.shape[0] - 1:2 * times.shape[0] - 1] trial_power.append(power) power = np.mean(trial_power, axis=0) im = ax.pcolormesh(times, freqs, power[0, 0, ...], cmap=colormap, shading='auto') ax.set_xlabel('Time (ms)') ax.set_ylabel('Frequency (Hz)') if colorbar: fig = ax.get_figure() xfmt = ScalarFormatter() xfmt.set_powerlimits((-2, 2)) # default colorbar if colorbar_inside is False: cbar = fig.colorbar(im, ax=ax, format=xfmt, shrink=0.8, pad=0) cbar.ax.yaxis.set_ticks_position('left') cbar.ax.set_ylabel(r'Power ([nAm $\times$ {:.0f}]$^2$)'.format( scale_applied), rotation=-90, va="bottom") # put colorbar inside the heatmap. else: cbar_color = "white" cbar_fontsize = 6 ax_pos = ax.get_position() ax_width = ax_pos.x1 - ax_pos.x0 ax_height = ax_pos.y1 - ax_pos.y0 cbar_L = ax_pos.x0 + 0.9 * ax_width cbar_B = ax_pos.y0 + 0.8 * ax_height cbar_W = ax_width * 0.04 cbar_H = ax_height * 0.15 cax = fig.add_axes([cbar_L, cbar_B, cbar_W, cbar_H]) cbar = fig.colorbar(im, cax=cax, format=xfmt, shrink=0.8, pad=0) cbar.ax.yaxis.set_ticks_position('left') cbar.ax.yaxis.offsetText.set_fontsize(cbar_fontsize) cbar.ax.set_ylabel( r'Power ([nAm $\times$ {:.0f}]$^2$)'.format(scale_applied), rotation=-90, va="bottom", fontsize=cbar_fontsize, color=cbar_color) cbar.ax.tick_params(direction='in', labelsize=cbar_fontsize, labelcolor=cbar_color, colors=cbar_color) plt.setp(cbar.ax.spines.values(), color=cbar_color) setattr(fig, f'_cbar-ax-{id(ax)}', cbar) plt_show(show) return ax.get_figure()
[docs]def plot_psd(dpl, *, fmin=0, fmax=None, tmin=None, tmax=None, layer='agg', color=None, label=None, ax=None, show=True): """Plot power spectral density (PSD) of dipole time course Applies `~scipy.signal.periodogram` from SciPy with ``window='hamming'``. Note that no spectral averaging is applied across time, as most ``hnn_core`` simulations are short-duration. However, passing a list of `Dipole` instances will plot their average (Hamming-windowed) power, which resembles the `Welch`-method applied over time. Parameters ---------- dpl : instance of Dipole | list of Dipole instances The Dipole object. fmin : float Minimum frequency to plot (in Hz). Default: 0 Hz fmax : float Maximum frequency to plot (in Hz). Default: None (plot up to Nyquist) tmin : float or None Start time of data to include (in ms). If None, use entire simulation. tmax : float or None End time of data to include (in ms). If None, use entire simulation. layer : str, default 'agg' The layer to plot. Can be one of 'agg', 'L2', and 'L5' color : str or tuple or None The line color of PSD label : str or None Line label for PSD ax : instance of matplotlib figure | None The matplotlib axis. show : bool If True, show the figure Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt from scipy.signal import periodogram from .dipole import Dipole if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True) if isinstance(dpl, Dipole): dpl = [dpl] scale_applied = dpl[0].scale_applied sfreq = dpl[0].sfreq trial_power = [] for dpl_trial in dpl: if dpl_trial.scale_applied != scale_applied: raise RuntimeError('All dipoles must be scaled equally!') if dpl_trial.sfreq != sfreq: raise RuntimeError('All dipoles must be sampled equally!') data, _ = _get_plot_data_trange(dpl_trial.times, dpl_trial.data[layer], tmin, tmax) freqs, Pxx = periodogram(data, sfreq, window='hamming', nfft=len(data)) trial_power.append(Pxx) ax.plot(freqs, np.mean(np.array(Pxx, ndmin=2), axis=0), color=color, label=label) if label: ax.legend() if fmax is not None: ax.set_xlim((fmin, fmax)) ax.ticklabel_format(axis='both', scilimits=(-2, 3)) ax.set_xlabel('Frequency (Hz)') if scale_applied == 1: ylabel = 'Power spectral density\n(nAm' + r'$^2 \ Hz^{-1}$)' else: ylabel = 'Power spectral density\n' +\ r'([nAm$\times$ {:.0f}]'.format(scale_applied) +\ r'$^2 \ Hz^{-1}$)' ax.set_ylabel(ylabel, multialignment='center') plt_show(show) return ax.get_figure()
def _linewidth_from_data_units(ax, linewidth): # see: https://stackoverflow.com/a/35501485 fig = ax.get_figure() length = fig.bbox_inches.width * ax.get_position().width value_range = np.diff(ax.get_xlim())[0] length *= 72 # Convert length to points # Scale linewidth to value range return linewidth * (length / value_range)
[docs]def plot_cell_morphology( cell, ax, color=None, pos=(0, 0, 0), xlim=(-250, 150), ylim=(-100, 100), zlim=(-100, 1200), show=True): """Plot the cell morphology. Parameters ---------- cell : instance of Cell The cell object ax : instance of Axes3D Matplotlib 3D axis show : bool If True, show the plot color : str | dict | None Color of cell. If str, entire cell plotted with color indicated by str. If dict, colors of individual sections can be specified. Must have a key for every section in cell as defined in the `Cell.sections` attribute. | Ex: ``{'apical_trunk': 'r', 'soma': 'b', ...}`` pos : tuple of int or float | None Position of cell soma. Must be a tuple of 3 elements for the (x, y, z) position of the soma in 3D space. Default: (0, 0, 0) xlim : tuple of int | tuple of float x limits of plot window. Default (-250, 150) ylim : tuple of int | tuple of float y limits of plot window. Default (-100, 100) zlim : tuple of int | tuple of float z limits of plot window. Default (-100, 1200) show : bool If True, show the plot Returns ------- axes : list of instance of Axes3D The matplotlib 3D axis handle. """ import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa if ax is None: plt.figure() ax = plt.axes(projection='3d') _validate_type(color, (str, dict, None), 'color') if color is None: section_colors = {section: 'b' for section in cell.sections.keys()} if isinstance(color, str): section_colors = {section: color for section in cell.sections.keys()} if isinstance(color, dict): section_colors = color _validate_type(pos, tuple, 'pos') if isinstance(pos, tuple): if len(pos) != 3: raise ValueError('pos must be a tuple of 3 elements') for pos_idx in pos: _validate_type(pos_idx, (float, int), 'pos[idx]') # Cell is in XZ plane ax.set_xlim((pos[0] + xlim[0], pos[0] + xlim[1])) ax.set_zlim((pos[1] + zlim[0], pos[1] + zlim[1])) ax.set_ylim((pos[2] + ylim[0], pos[2] + ylim[1])) for sec_name, section in cell.sections.items(): linewidth = _linewidth_from_data_units(ax, section.diam) end_pts = section.end_pts dx = pos[0] - cell.sections['soma'].end_pts[0][0] dy = pos[1] - cell.sections['soma'].end_pts[0][1] dz = pos[2] - cell.sections['soma'].end_pts[0][2] xs, ys, zs = list(), list(), list() for pt in end_pts: xs.append(pt[0] + dx) ys.append(pt[1] + dz) zs.append(pt[2] + dy) ax.plot(xs, ys, zs, '-', linewidth=linewidth, color=section_colors[sec_name]) ax.view_init(0, -90) ax.axis('off') plt.tight_layout() plt_show(show) return ax
[docs]def plot_connectivity_matrix(net, conn_idx, ax=None, show_weight=True, colorbar=True, colormap='Greys', show=True): """Plot connectivity matrix with color bar for synaptic weights Parameters ---------- net : Instance of Network object The Network object conn_idx : int Index of connection to be visualized from `net.connectivity` ax : instance of Axes3D Matplotlib 3D axis show_weight : bool If True, visualize connectivity weights as gradient. If False, all weights set to constant value. colormap : str The name of a matplotlib colormap. Default: 'Greys' colorbar : bool If True (default), adjust figure to include colorbar. show : bool If True, show the plot Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter from .network import Network from .cell import _get_gaussian_connection _validate_type(net, Network, 'net', 'Network') _validate_type(conn_idx, int, 'conn_idx', 'int') _validate_type(show_weight, bool, 'show_weight', 'bool') if ax is None: _, ax = plt.subplots(1, 1) # Load objects for distance calculation conn = net.connectivity[conn_idx] nc_dict = conn['nc_dict'] src_type = conn['src_type'] target_type = conn['target_type'] src_type_pos = net.pos_dict[src_type] target_type_pos = net.pos_dict[target_type] src_range = np.array(net.gid_ranges[conn['src_type']]) target_range = np.array(net.gid_ranges[conn['target_type']]) connectivity_matrix = np.zeros((len(src_range), len(target_range))) for src_gid, target_src_pair in conn['gid_pairs'].items(): src_idx = np.where(src_range == src_gid)[0][0] target_indeces = np.where(np.isin(target_range, target_src_pair))[0] for target_idx in target_indeces: src_pos = src_type_pos[src_idx] target_pos = target_type_pos[target_idx] # Identical calculation used in Cell.par_connect_from_src() if show_weight: weight, _ = _get_gaussian_connection( src_pos, target_pos, nc_dict, inplane_distance=net._inplane_distance) else: weight = 1.0 connectivity_matrix[src_idx, target_idx] = weight im = ax.imshow(connectivity_matrix, cmap=colormap, interpolation='none') ax.set_xlabel('Time (ms)') ax.set_ylabel('Frequency (Hz)') if colorbar: fig = ax.get_figure() xfmt = ScalarFormatter() xfmt.set_powerlimits((-2, 2)) cbar = fig.colorbar(im, ax=ax, format=xfmt) cbar.ax.yaxis.set_ticks_position('right') cbar.ax.set_ylabel('Weight', rotation=-90, va="bottom") ax.set_xlabel(f"{conn['target_type']} target gids " f"({target_range[0]}-{target_range[-1]})") ax.set_xticklabels(list()) ax.set_ylabel(f"{conn['src_type']} source gids " f"({src_range[0]}-{src_range[-1]})") ax.set_yticklabels(list()) ax.set_title(f"{conn['src_type']} -> {conn['target_type']} " f"({conn['loc']}, {conn['receptor']})") plt.tight_layout() plt_show(show) return ax.get_figure()
def _update_target_plot(ax, conn, src_gid, src_type_pos, target_type_pos, src_range, target_range, nc_dict, colormap, inplane_distance): from .cell import _get_gaussian_connection # Extract indices to get position in network # Index in gid range aligns with net.pos_dict target_src_pair = conn['gid_pairs'][src_gid] target_indeces = np.where(np.isin(target_range, target_src_pair))[0] src_idx = np.where(src_range == src_gid)[0][0] src_pos = src_type_pos[src_idx] # Aggregate positions and weight of each connected target weights, target_x_pos, target_y_pos = list(), list(), list() for target_idx in target_indeces: target_pos = target_type_pos[target_idx] target_x_pos.append(target_pos[0]) target_y_pos.append(target_pos[1]) weight, _ = _get_gaussian_connection(src_pos, target_pos, nc_dict, inplane_distance) weights.append(weight) ax.clear() im = ax.scatter(target_x_pos, target_y_pos, c=weights, s=50, cmap=colormap) x_pos = target_type_pos[:, 0] y_pos = target_type_pos[:, 1] ax.scatter(x_pos, y_pos, color='k', marker='x', zorder=-1, s=20) ax.scatter(src_pos[0], src_pos[1], marker='s', color='red', s=150) ax.set_ylabel('Y Position') ax.set_xlabel('X Position') return im
[docs]def plot_cell_connectivity(net, conn_idx, src_gid=None, axes=None, colorbar=True, colormap='viridis', show=True): """Plot synaptic weight of connections. This is an interactive plot with source cells shown in the left subplot and connectivity from a source cell to all the target cells in the right subplot. Click on the cells in the left subplot to explore how the connectivity pattern changes for different source cells. Parameters ---------- net : Instance of Network object The Network object conn_idx : int Index of connection to be visualized from net.connectivity src_gid : int | None The cell ID of the source cell. It must be an element of net.connectivity[conn_idx]['gid_pairs'].keys() If None, the first cell from the list of valid src_gids is selected. axes : instance of Axes3D Matplotlib 3D axis colormap : str The name of a matplotlib colormap. Default: 'viridis' colorbar : bool If True (default), adjust figure to include colorbar. show : bool If True, show the plot Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. Notes ----- Target cells will be determined by the connections in net.connectivity[conn_idx]. If the target cell is not connected to the source cell, it will appear as a smaller black cross. Source cell is plotted as a red square. Source cell will not be plotted if the connection corresponds to a drive, ex: poisson, bursty, etc. """ import matplotlib.pyplot as plt from .network import Network from matplotlib.ticker import ScalarFormatter _validate_type(net, Network, 'net', 'Network') _validate_type(conn_idx, int, 'conn_idx', 'int') # Load objects for distance calculation conn = net.connectivity[conn_idx] nc_dict = conn['nc_dict'] src_type = conn['src_type'] target_type = conn['target_type'] src_type_pos = np.array(net.pos_dict[src_type]) target_type_pos = np.array(net.pos_dict[target_type]) src_range = np.array(net.gid_ranges[conn['src_type']]) valid_src_gids = list(net.connectivity[conn_idx]['gid_pairs'].keys()) src_pos_valid = src_type_pos[np.isin(src_range, valid_src_gids)] if src_gid is None: src_gid = valid_src_gids[0] _validate_type(src_gid, int, 'src_gid', 'int') if src_gid not in valid_src_gids: raise ValueError(f'src_gid {src_gid} not a valid cell ID for this ' f'connection. Please select one of {valid_src_gids}') target_range = np.array(net.gid_ranges[conn['target_type']]) if axes is None: if src_type in net.cell_types: fig, axes = plt.subplots(1, 2, sharex=True, sharey=True) else: fig, axes = plt.subplots(1, 1, sharex=True, sharey=True) axes = [axes] if len(axes) == 2: ax_src, ax = axes else: ax = axes[0] im = _update_target_plot(ax, conn, src_gid, src_type_pos, target_type_pos, src_range, target_range, nc_dict, colormap, net._inplane_distance) x_src = src_type_pos[:, 0] y_src = src_type_pos[:, 1] x_src_valid = src_pos_valid[:, 0] y_src_valid = src_pos_valid[:, 1] if src_type in net.cell_types: ax_src.scatter(x_src, y_src, marker='s', color='red', s=50, alpha=0.2) ax_src.scatter(x_src_valid, y_src_valid, marker='s', color='red', s=50) plt.suptitle(f"{conn['src_type']}-> {conn['target_type']}" f" ({conn['loc']}, {conn['receptor']})") def _onclick(event): if event.inaxes in [ax] or event.inaxes is None: return dist = np.linalg.norm(src_type_pos[:, :2] - np.array([event.xdata, event.ydata]), axis=1) src_idx = np.argmin(dist) src_gid = src_range[src_idx] if src_gid not in valid_src_gids: return _update_target_plot(ax, conn, src_gid, src_type_pos, target_type_pos, src_range, target_range, nc_dict, colormap, net._inplane_distance) fig.canvas.draw() if colorbar: fig = ax.get_figure() xfmt = ScalarFormatter() xfmt.set_powerlimits((-2, 2)) cbar = fig.colorbar(im, ax=ax, format=xfmt) cbar.ax.yaxis.set_ticks_position('right') cbar.ax.set_ylabel('Weight', rotation=-90, va="bottom") plt.tight_layout() fig.canvas.mpl_connect('button_press_event', _onclick) plt_show(show) return ax.get_figure()
[docs]def plot_laminar_csd(times, data, contact_labels, ax=None, colorbar=True, vmin=None, vmax=None, sink='b', interpolation='spline', show=True): """Plot laminar current source density (CSD) estimation from LFP array. Parameters ---------- times : Numpy array, shape (n_times,) Sampling times (in ms). data : array-like, shape (n_channels, n_times) CSD data, channels x time. ax : instance of matplotlib figure | None The matplotlib axis. colorbar : bool If True (default), adjust figure to include colorbar. contact_labels : list Labels associated with the contacts to plot. Passed as-is to :func:`~matplotlib.axes.Axes.set_yticklabels`. vmin: float, optional lower bound of the color axis. Will be set automatically of None. vmax: float, optional upper bound of the color axis. Will be set automatically of None. sink : str If set to 'blue' or 'b', plots sinks in blue and sources in red, if set to 'red' or 'r', sinks plotted in red and sources blue. interpolation : str | None If 'spline', will smoothen the CSD using spline method, if None, no smoothing will be applied. show : bool If True, show the plot. Returns ------- fig : instance of matplotlib Figure The matplotlib figure handle. """ import matplotlib.pyplot as plt from scipy.interpolate import RectBivariateSpline if ax is None: _, ax = plt.subplots(1, 1, constrained_layout=True) if sink[0].lower() == 'b': cmap = "jet" elif sink[0].lower() == 'r': cmap = "jet_r" elif sink[0].lower() != 'b' or sink[0].lower() != 'r': raise RuntimeError('Please use sink = "b" or sink = "r".' ' Only colormap "jet" is supported for CSD.') if interpolation == 'spline': # create interpolation function interp_data = RectBivariateSpline(times, contact_labels, data.T) # increase number of contacts new_depths = np.linspace(contact_labels[0], contact_labels[-1], contact_labels[-1] - contact_labels[0]) # interpolate data = interp_data(times, new_depths).T elif interpolation is None: data = data new_depths = contact_labels # if vmin and vmax are both None, set colormap such that green = zero if vmin is None and vmax is None: vmin = -np.max(np.abs(data)) vmax = np.max(np.abs(data)) im = ax.pcolormesh(times, new_depths, data, cmap=cmap, shading='auto', vmin=vmin, vmax=vmax) ax.set_xlabel('time (s)') ax.set_ylabel('electrode depth') if colorbar: color_axis = ax.inset_axes([1.05, 0, 0.02, 1], transform=ax.transAxes) plt.colorbar(im, ax=ax, cax=color_axis).set_label(r'$CSD (uV/um^{2})$') plt.tight_layout() plt_show(show) return ax.get_figure()
[docs]class NetworkPlotter: """Helper class to visualize full morphology of HNN model. Parameters ---------- net : Instance of Network object The Network object ax : instance of matplotlib Axes3D | None An axis object from matplotlib. If None, a new figure is created. vmin : int | float Lower limit of colormap for plotting voltage Default: -100 mV vmax : int | float Upper limit of colormap for plotting voltage Default: 50 mV bg_color : str Background color of ax. Default: 'black' colorbar : bool If True (default), adjust figure to include colorbar. voltage_colormap : str Colormap used for plotting voltages Default: 'viridis' elev : int | float Elevation 3D plot viewpoint, default: 10 azim : int | float Azimuth of 3D plot view point, default: 20 xlim : tuple of int | tuple of float x limits of plot window. Default (-200, 3100) ylim : tuple of int | tuple of float y limits of plot window. Default (-200, 3100) zlim : tuple of int | tuple of float z limits of plot window. Default (-300, 2200) trial_idx : int Index of simulation trial plotted. Default: 0 time_idx : int Index of time point plotted. Default: 0 """ def __init__(self, net, ax=None, vmin=-100, vmax=50, bg_color='black', colorbar=True, voltage_colormap='viridis', elev=10, azim=-500, xlim=(-200, 3100), ylim=(-200, 3100), zlim=(-300, 2200), trial_idx=0, time_idx=0): from matplotlib import colormaps self._validate_parameters(vmin, vmax, bg_color, voltage_colormap, colorbar, elev, azim, xlim, ylim, zlim, trial_idx, time_idx) # Set init arguments self.net = net self.ax = ax self._vmin = vmin self._vmax = vmax self._bg_color = bg_color self._colorbar = colorbar self._voltage_colormap = voltage_colormap self._colormaps = colormaps self._xlim = xlim self._ylim = ylim self._zlim = zlim self._elev = elev self._azim = azim self._trial_idx = trial_idx self._time_idx = time_idx # Check if Network object is simulated self.times, self._vsec_recorded = self._check_network_simulation() # Initialize plots and colormap self.fig = None self._colormap = colormaps[voltage_colormap] self.vsec_array = self._get_voltages() self.color_array = self._colormap(self.vsec_array) self._initialize_plots() if self._colorbar: self._update_colorbar() else: self._cbar = None def _validate_parameters(self, vmin, vmax, bg_color, voltage_colormap, colorbar, elev, azim, xlim, ylim, zlim, trial_idx, time_idx): _validate_type(vmin, (int, float), 'vmin') _validate_type(vmax, (int, float), 'vmax') _validate_type(bg_color, str, 'bg_color') _validate_type(voltage_colormap, str, 'voltage_colormap') _validate_type(colorbar, bool, 'colorbar') _validate_type(xlim, tuple, 'xlim') _validate_type(ylim, tuple, 'ylim') _validate_type(zlim, tuple, 'zlim') _validate_type(elev, (int, float), 'elev') _validate_type(azim, (int, float), 'azim') _validate_type(trial_idx, int, 'trial_idx') _validate_type(time_idx, int, 'time_idx') def _check_network_simulation(self): times = None vsec_recorded = False # Check if network simulated if self.net.cell_response is not None: times = self.net.cell_response.times # Check if voltage recorded if self.net._params['record_vsec'] == 'all': vsec_recorded = True return times, vsec_recorded def _initialize_plots(self): import matplotlib.pyplot as plt # Create figure if self.ax is None: self.fig = plt.figure() self.ax = self.fig.add_subplot(projection='3d') self.ax.set_facecolor(self._bg_color) self._init_network_plot() self._update_axes() def _get_voltages(self): vsec_list = list() for cell_type in self.net.cell_types: gid_range = self.net.gid_ranges[cell_type] for gid in gid_range: cell = self.net.cell_types[cell_type] for sec_name in cell.sections.keys(): if self._vsec_recorded is True: vsec = np.array(self.net.cell_response.vsec[ self.trial_idx][gid][sec_name]) vsec_list.append(vsec) else: # Populate with zeros if no voltage recording vsec_list.append([0.0]) vsec_array = np.vstack(vsec_list) vsec_array = (vsec_array - self.vmin) / (self.vmax - self.vmin) return vsec_array def _update_section_voltages(self, t_idx): if not self._vsec_recorded: raise RuntimeError("Network must be simulated with" "`simulate_dipole(record_vsec='all')` before" "plotting voltages.") color_list = self.color_array[:, t_idx] for line, color in zip(self.ax.lines, color_list): line.set_color(color) def _init_network_plot(self): for cell_type in self.net.cell_types: gid_range = self.net.gid_ranges[cell_type] for gid_idx, gid in enumerate(gid_range): cell = self.net.cell_types[cell_type] pos = self.net.pos_dict[cell_type][gid_idx] pos = (float(pos[0]), float(pos[2]), float(pos[1])) cell.plot_morphology(ax=self.ax, show=False, pos=pos, xlim=self.xlim, ylim=self.ylim, zlim=self.zlim) def _update_axes(self): self.ax.set_xlim(self._xlim) self.ax.set_ylim(self._ylim) self.ax.set_zlim(self._zlim) self.ax.view_init(self._elev, self._azim) def _update_colorbar(self): import matplotlib.pyplot as plt import matplotlib.colors as mc fig = self.ax.get_figure() sm = plt.cm.ScalarMappable( cmap=self.voltage_colormap, norm=mc.Normalize(vmin=self.vmin, vmax=self.vmax)) self._cbar = fig.colorbar(sm, ax=self.ax)
[docs] def export_movie(self, fname, fps=30, dpi=300, decim=10, interval=30, frame_start=0, frame_stop=None, writer='pillow'): """Export movie of network activity Parameters ---------- fname : str Filename of exported movie fps : int Frames per second, default: 30 dpi : int Dots per inch, default: 300 decim : int Decimation factor for frames, default: 10 interval : int Delay between frames, default: 30 frame_start : int Index of first frame, default: 0 frame_stop : int | None Index of last frame, default: None If None, entire simulation is animated writer : str Movie writer, default: 'pillow'. Alternative movie writers can be found at https://matplotlib.org/stable/api/animation_api.html """ import matplotlib.animation as animation if not self._vsec_recorded: raise RuntimeError("Network must be simulated with" "`simulate_dipole(record_vsec='all')` before" "plotting voltages.") if frame_stop is None: frame_stop = len(self.times) - 1 frames = np.arange(frame_start, frame_stop, decim) ani = animation.FuncAnimation( self.fig, self._set_time_idx, frames, interval=interval) writer = animation.writers[writer](fps=fps) ani.save(fname, writer=writer, dpi=dpi) return ani
# Axis limits @property def xlim(self): return self._xlim @xlim.setter def xlim(self, xlim): _validate_type(xlim, tuple, 'xlim') self._xlim = xlim self.ax.set_xlim(self._xlim) @property def ylim(self): return self._ylim @ylim.setter def ylim(self, ylim): _validate_type(ylim, tuple, 'ylim') self._ylim = ylim self.ax.set_ylim(self._ylim) @property def zlim(self): return self._zlim @zlim.setter def zlim(self, zlim): _validate_type(zlim, tuple, 'zlim') self._zlim = zlim self.ax.set_zlim(self._zlim) # Elevation and azimuth of 3D viewpoint @property def elev(self): return self._elev @elev.setter def elev(self, elev): _validate_type(elev, (int, float), 'elev') self._elev = elev self.ax.view_init(self._elev, self._azim) @property def azim(self): return self._azim @azim.setter def azim(self, azim): _validate_type(azim, (int, float), 'azim') self._azim = azim self.ax.view_init(self._elev, self._azim) # Minimum and maximum voltages @property def vmin(self): return self._vmin @vmin.setter def vmin(self, vmin): _validate_type(vmin, (int, float), 'vmin') self._vmin = vmin self.vsec_array = self._get_voltages() self.color_array = self._colormap(self.vsec_array) if self._colorbar: self._cbar.remove() self._update_colorbar() @property def vmax(self): return self._vmax @vmax.setter def vmax(self, vmax): _validate_type(vmax, (int, float), 'vmax') self._vmax = vmax self.vsec_array = self._get_voltages() self.color_array = self._colormap(self.vsec_array) if self._colorbar: self._cbar.remove() self._update_colorbar() # Time and trial indices @property def trial_idx(self): return self._trial_idx @trial_idx.setter def trial_idx(self, trial_idx): _validate_type(trial_idx, int, 'trial_idx') if not self._vsec_recorded: raise RuntimeError("Network must be simulated with" "`simulate_dipole(record_vsec='all')` before" "setting `trial_idx`.") self._trial_idx = trial_idx self.vsec_array = self._get_voltages() self.color_array = self._colormap(self.vsec_array) self._update_section_voltages(self._time_idx) @property def time_idx(self): return self._time_idx @time_idx.setter def time_idx(self, time_idx): _validate_type(time_idx, (int, np.integer), 'time_idx') if not self._vsec_recorded: raise RuntimeError("Network must be simulated with" "`simulate_dipole(record_vsec='all')` before" "setting `time_idx`.") self._time_idx = time_idx self._update_section_voltages(self._time_idx) # Callable update function for making animations def _set_time_idx(self, time_idx): self.time_idx = time_idx # Background color and voltage colormaps @property def bg_color(self): return self._bg_color @bg_color.setter def bg_color(self, bg_color): self._bg_color = bg_color self.ax.set_facecolor(self._bg_color) @property def voltage_colormap(self): return self._voltage_colormap @voltage_colormap.setter def voltage_colormap(self, voltage_colormap): self._voltage_colormap = voltage_colormap self._colormap = self._colormaps[self._voltage_colormap] self.color_array = self._colormap(self.vsec_array) if self._colorbar: self._cbar.remove() self._update_colorbar() @property def colorbar(self): return self._colorbar @colorbar.setter def colorbar(self, colorbar): _validate_type(colorbar, bool, 'colorbar') self._colorbar = colorbar if self._colorbar: # Remove old colorbar if already exists if self._cbar is not None: self._cbar.remove() self._update_colorbar() else: self._cbar.remove() self._cbar = None