"""Network model functions."""
# Authors: Nick Tolley <nicholas_tolley@brown.edu>
import os.path as op
import hnn_core
from hnn_core import read_params
from .network import Network, _create_cell_coords
from .params import _short_name
from .cells_default import pyramidal_ca, pyramidal, basket
from .externals.mne import _validate_type
# ToDO -> direct _cell_L2Pyr calling
[docs]
def jones_2009_model(
    params=None,
    add_drives_from_params=False,
    legacy_mode=False,
    mesh_shape=(10, 10),
):
    """Instantiate the network model described in Jones et al. 2009
    Parameters
    ----------
    params : str | dict | None
        The path to the parameter file for constructing the network.
        If None, parameters loaded from default.json
        Default: None
    add_drives_from_params : bool
        If True, add drives as defined in the params-dict. NB this is mainly
        for backward-compatibility with HNN GUI, and will be deprecated in a
        future release. Default: False
    legacy_mode : bool
        Set to False by default. Enables matching HNN GUI output when drives
        are added suitably. Will be deprecated in a future release.
    mesh_shape : tuple of int (default: (10, 10))
        Defines the (n_x, n_y) shape of the grid of pyramidal cells.
    Returns
    -------
    net : Instance of Network object
        Network object used to store
    Notes
    -----
    The network is composed of a square grid of pyramidal cells, arranged in
    two layers (L5 and L2). The default in-plane separation of the grid points
    is 1.0 um, and the layer separation 1307.4 um. These can be adjusted after
    the net is created using the set_cell_positions-method. An all-to-all
    connectivity pattern is applied between cells. Inhibitory basket cells are
    present at a 1:3-ratio.
    This network was first described in Jones et al. 2009 [1]_ , and this code provides
    the implementation used in Neymotin et al. 2020 [2]_ .
    References
    ----------
    .. [1] Jones, Stephanie R., et al. "Quantitative Analysis and
           Biophysically Realistic Neural Modeling of the MEG Mu Rhythm:
           Rhythmogenesis and Modulation of Sensory-Evoked Responses."
           Journal of Neurophysiology 102, 3554–3572 (2009).
           https://doi.org/10.1152/jn.00535.2009
    .. [2] Neymotin, Samuel A, et al. 2020. "Human Neocortical Neurosolver (HNN), a New
           Software Tool for Interpreting the Cellular and Network Origin of Human
           MEG/EEG Data." eLife 9 (January):e51214. https://doi.org/10.7554/eLife.51214
    """
    hnn_core_root = op.dirname(hnn_core.__file__)
    if params is None:
        params = op.join(hnn_core_root, "param", "default.json")
    if isinstance(params, str):
        params = read_params(params)
    # Define cell types for Jones 2009 model
    # data is here in metaData format
    cell_types = {
        "L2_basket": {
            "cell_object": basket(cell_name="L2_basket"),
            "cell_metadata": {
                "morpho_type": "basket",
                "electro_type": "inhibitory",
                "layer": "2",
                "measure_dipole": False,
                "reference": "https://doi.org/10.7554/eLife.51214",
            },
        },
        "L2_pyramidal": {
            "cell_object": pyramidal(cell_name="L2_pyramidal"),
            "cell_metadata": {
                "morpho_type": "pyramidal",
                "electro_type": "excitatory",
                "layer": "2",
                "measure_dipole": True,
                "reference": "https://doi.org/10.7554/eLife.51214",
            },
        },
        "L5_basket": {
            "cell_object": basket(cell_name="L5_basket"),
            "cell_metadata": {
                "morpho_type": "basket",
                "electro_type": "inhibitory",
                "layer": "5",
                "measure_dipole": False,
                "reference": "https://doi.org/10.7554/eLife.51214",
            },
        },
        "L5_pyramidal": {
            "cell_object": pyramidal(cell_name="L5_pyramidal"),
            "cell_metadata": {
                "morpho_type": "pyramidal",
                "electro_type": "excitatory",
                "layer": "5",
                "measure_dipole": True,
                "reference": "https://doi.org/10.7554/eLife.51214",
            },
        },
    }
    # Create layer positions
    layer_dict = _create_cell_coords(
        n_pyr_x=mesh_shape[0],
        n_pyr_y=mesh_shape[1],
        z_coord=1307.4,  # Default layer separation
        inplane_distance=1.0,  # Default in-plane distance
    )
    # Map cell types to layer positions
    pos_dict = {
        "L5_pyramidal": layer_dict["L5_bottom"],
        "L2_pyramidal": layer_dict["L2_bottom"],
        "L5_basket": layer_dict["L5_mid"],
        "L2_basket": layer_dict["L2_mid"],
        "origin": layer_dict["origin"],
    }
    # Create network with cell types and positions
    net = Network(
        params,
        add_drives_from_params=add_drives_from_params,
        legacy_mode=legacy_mode,
        mesh_shape=mesh_shape,
        pos_dict=pos_dict,
        cell_types=cell_types,
    )
    delay = net.delay
    # source of synapse is always at soma
    # layer2 Pyr -> layer2 Pyr
    # layer5 Pyr -> layer5 Pyr
    lamtha = 3.0
    loc = "proximal"
    for target_cell in ["L2_pyramidal", "L5_pyramidal"]:
        for receptor in ["nmda", "ampa"]:
            key = (
                f"gbar_{_short_name(target_cell)}_{_short_name(target_cell)}_{receptor}"
            )
            weight = net._params[key]
            net.add_connection(
                target_cell,
                target_cell,
                loc,
                receptor,
                weight,
                delay,
                lamtha,
                allow_autapses=False,
            )
    # layer2 Basket -> layer2 Pyr
    src_cell = "L2_basket"
    target_cell = "L2_pyramidal"
    lamtha = 50.0
    loc = "soma"
    for receptor in ["gabaa", "gabab"]:
        key = f"gbar_L2Basket_L2Pyr_{receptor}"
        weight = net._params[key]
        net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # layer5 Basket -> layer5 Pyr
    src_cell = "L5_basket"
    target_cell = "L5_pyramidal"
    lamtha = 70.0
    loc = "soma"
    for receptor in ["gabaa", "gabab"]:
        key = f"gbar_L5Basket_{_short_name(target_cell)}_{receptor}"
        weight = net._params[key]
        net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # layer2 Pyr -> layer5 Pyr
    src_cell = "L2_pyramidal"
    lamtha = 3.0
    receptor = "ampa"
    for loc in ["proximal", "distal"]:
        key = f"gbar_L2Pyr_{_short_name(target_cell)}"
        weight = net._params[key]
        net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # layer2 Basket -> layer5 Pyr
    src_cell = "L2_basket"
    lamtha = 50.0
    key = f"gbar_L2Basket_{_short_name(target_cell)}"
    weight = net._params[key]
    loc = "distal"
    receptor = "gabaa"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # xx -> layer2 Basket
    src_cell = "L2_pyramidal"
    target_cell = "L2_basket"
    lamtha = 3.0
    key = f"gbar_L2Pyr_{_short_name(target_cell)}"
    weight = net._params[key]
    loc = "soma"
    receptor = "ampa"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    src_cell = "L2_basket"
    lamtha = 20.0
    key = f"gbar_L2Basket_{_short_name(target_cell)}"
    weight = net._params[key]
    loc = "soma"
    receptor = "gabaa"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # xx -> layer5 Basket
    src_cell = "L5_basket"
    target_cell = "L5_basket"
    lamtha = 20.0
    loc = "soma"
    receptor = "gabaa"
    key = f"gbar_L5Basket_{_short_name(target_cell)}"
    weight = net._params[key]
    net.add_connection(
        src_cell,
        target_cell,
        loc,
        receptor,
        weight,
        delay,
        lamtha,
        allow_autapses=False,
    )
    src_cell = "L5_pyramidal"
    lamtha = 3.0
    key = f"gbar_L5Pyr_{_short_name(target_cell)}"
    weight = net._params[key]
    loc = "soma"
    receptor = "ampa"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    src_cell = "L2_pyramidal"
    lamtha = 3.0
    key = f"gbar_L2Pyr_{_short_name(target_cell)}"
    weight = net._params[key]
    loc = "soma"
    receptor = "ampa"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    return net 
[docs]
def law_2021_model(
    params=None, add_drives_from_params=False, legacy_mode=False, mesh_shape=(10, 10)
):
    """Instantiate the expansion of Jones 2009 model to study beta
    modulated ERPs as described in
    Law et al. Cereb. Cortex 2021 [1]_
    Returns
    -------
    net : Instance of Network object
        Network object used to store the model used in
        Law et al. 2021.
    See Also
    --------
    jones_2009_model
    Notes
    -----
    Model reproduces results from Law et al. 2021
    This model differs from the default network model in several
    parameters including
    1) Increased GABAb time constants on L2/L5 pyramidal cells
    2) Decrease L5_pyramidal -> L5_pyramidal nmda weight
    3) Modified L5_basket -> L5_pyramidal inhibition weights
    4) Removal of L5 pyramidal somatic and basal dendrite calcium channels
    5) Replace L2_basket -> L5_pyramidal GABAa connection with GABAb
    6) Addition of L5_basket -> L5_pyramidal distal connection
    References
    ----------
    .. [1] Law, Robert G., et al. "Thalamocortical Mechanisms Regulating the
           Relationship between Transient Beta Events and Human Tactile
           Perception." Cerebral Cortex, 32, 668–688 (2022).
    """
    net = jones_2009_model(
        params, add_drives_from_params, legacy_mode, mesh_shape=mesh_shape
    )
    # Update biophysics (increase gabab duration of inhibition)
    net.cell_types["L2_pyramidal"]["cell_object"].synapses["gabab"]["tau1"] = 45.0
    net.cell_types["L2_pyramidal"]["cell_object"].synapses["gabab"]["tau2"] = 200.0
    net.cell_types["L5_pyramidal"]["cell_object"].synapses["gabab"]["tau1"] = 45.0
    net.cell_types["L5_pyramidal"]["cell_object"].synapses["gabab"]["tau2"] = 200.0
    # Decrease L5_pyramidal -> L5_pyramidal nmda weight
    net.connectivity[2]["nc_dict"]["A_weight"] = 0.0004
    # Modify L5_basket -> L5_pyramidal inhibition
    net.connectivity[6]["nc_dict"]["A_weight"] = 0.02  # gabaa
    net.connectivity[7]["nc_dict"]["A_weight"] = 0.005  # gabab
    # Remove L5 pyramidal somatic and basal dendrite calcium channels
    for sec in ["soma", "basal_1", "basal_2", "basal_3"]:
        del net.cell_types["L5_pyramidal"]["cell_object"].sections[sec].mechs["ca"]
    # Remove L2_basket -> L5_pyramidal gabaa connection
    del net.connectivity[10]  # Original paper simply sets gbar to 0.0
    # Add L2_basket -> L5_pyramidal gabab connection
    delay = net.delay
    src_cell = "L2_basket"
    target_cell = "L5_pyramidal"
    lamtha = 50.0
    weight = 0.0002
    loc = "distal"
    receptor = "gabab"
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    # Add L5_basket -> L5_pyramidal distal connection
    # ("Martinotti-like recurrent tuft connection")
    src_cell = "L5_basket"
    target_cell = "L5_pyramidal"
    lamtha = 70.0
    loc = "distal"
    receptor = "gabaa"
    key = f"gbar_L5Basket_L5Pyr_{receptor}"
    weight = net._params[key]
    net.add_connection(src_cell, target_cell, loc, receptor, weight, delay, lamtha)
    return net 
# Remove params argument after updating examples
# (only relevant for Jones 2009 model)
[docs]
def calcium_model(
    params=None, add_drives_from_params=False, legacy_mode=False, mesh_shape=(10, 10)
):
    """Instantiate the Jones 2009 model with improved calcium dynamics in
    L5 pyramidal neurons. For more details on changes to calcium dynamics
    see Kohl et al. Brain Topragr 2022 [1]_
    Returns
    -------
    net : Instance of Network object
        Network object used to store the Jones 2009 model with an improved
        calcium channel distribution.
    See Also
    --------
    jones_2009_model
    Notes
    -----
    This model builds on the Jones 2009 model by using a more biologically
    accurate distribution of calcium channels on L5 pyramidal cells.
    Specifically, this model introduces a distance dependent maximum
    conductance (gbar) on calcium channels such that the gbar linearly
    decreases along the dendrites in the direction of the soma.
    References
    ----------
    .. [1] Kohl, Carmen, et al. "Neural Mechanisms Underlying Human Auditory
           Evoked Responses Revealed By Human Neocortical Neurosolver."
           Brain Topography, 35, 19–35 (2022).
    """
    hnn_core_root = op.dirname(hnn_core.__file__)
    params_fname = op.join(hnn_core_root, "param", "default.json")
    if params is None:
        params = read_params(params_fname)
    net = jones_2009_model(
        params, add_drives_from_params, legacy_mode, mesh_shape=mesh_shape
    )
    # Replace L5 pyramidal cell template with updated calcium
    cell_name = "L5_pyramidal"
    pos = net.cell_types[cell_name]["cell_object"].pos
    net.cell_types[cell_name]["cell_object"] = pyramidal_ca(
        cell_name=cell_name, pos=pos
    )
    return net 
def add_erp_drives_to_jones_model(net, tstart=0.0):
    """Add drives necessary for an event related potential (ERP)
    Parameters
    ----------
    net : Instance of Network object
        Network object that will be updated with ERP drives.
        Drives are updated in place.
    tstart : float | int
        Start time of sensory input in ms. (Default 0.0 ms)
    Notes
    -----
    The first proximal input arrives at cortex ~20 ms after sensory
    stimulus. The exact delay depends random number generator due to
    random sampling of times from a gaussian.
    """
    _validate_type(net, Network, "net", "Network")
    _validate_type(tstart, (float, int), "tstart", "float or int")
    # Add distal drive
    weights_ampa_d1 = {
        "L2_basket": 0.006562,
        "L2_pyramidal": 7e-6,
        "L5_pyramidal": 0.142300,
    }
    weights_nmda_d1 = {
        "L2_basket": 0.019482,
        "L2_pyramidal": 0.004317,
        "L5_pyramidal": 0.080074,
    }
    synaptic_delays_d1 = {"L2_basket": 0.1, "L2_pyramidal": 0.1, "L5_pyramidal": 0.1}
    net.add_evoked_drive(
        "evdist1",
        mu=63.53 + tstart,
        sigma=3.85,
        numspikes=1,
        weights_ampa=weights_ampa_d1,
        weights_nmda=weights_nmda_d1,
        location="distal",
        synaptic_delays=synaptic_delays_d1,
        event_seed=274,
    )
    # Add proximal drives
    weights_ampa_p1 = {
        "L2_basket": 0.08831,
        "L2_pyramidal": 0.01525,
        "L5_basket": 0.19934,
        "L5_pyramidal": 0.00865,
    }
    synaptic_delays_prox = {
        "L2_basket": 0.1,
        "L2_pyramidal": 0.1,
        "L5_basket": 1.0,
        "L5_pyramidal": 1.0,
    }
    net.add_evoked_drive(
        "evprox1",
        mu=26.61 + tstart,
        sigma=2.47,
        numspikes=1,
        weights_ampa=weights_ampa_p1,
        weights_nmda=None,
        location="proximal",
        synaptic_delays=synaptic_delays_prox,
        event_seed=544,
    )
    weights_ampa_p2 = {
        "L2_basket": 0.000003,
        "L2_pyramidal": 1.438840,
        "L5_basket": 0.008958,
        "L5_pyramidal": 0.684013,
    }
    net.add_evoked_drive(
        "evprox2",
        mu=137.12 + tstart,
        sigma=8.33,
        numspikes=1,
        weights_ampa=weights_ampa_p2,
        location="proximal",
        synaptic_delays=synaptic_delays_prox,
        event_seed=814,
    )