"""Network class."""
# Authors: Mainak Jas <mjas@mgh.harvard.edu>
# Sam Neymotin <samnemo@gmail.com>
# Blake Caldwell <blake_caldwell@brown.edu>
# Christopher Bailey <cjb@cfin.au.dk>
# Nick Tolley <nicholas_tolley@brown.edu>
# Ryan Thorpe <ryan_thorpe@brown.edu>
import itertools as it
from copy import deepcopy
from collections import OrderedDict, defaultdict
import numpy as np
import warnings
from .drives import _drive_cell_event_times
from .drives import _get_target_properties, _add_drives_from_params
from .drives import _check_drive_parameter_values, _check_poisson_rates
from .cells_default import pyramidal, basket
from .params import _long_name, _short_name
from .viz import plot_cells
from .externals.mne import _validate_type, _check_option
from .extracellular import ExtracellularArray
from .check import _check_gids, _gid_to_type, _string_input_to_list
from .hnn_io import write_network_configuration, network_to_dict
from .externals.mne import copy_doc
from typing import Union
def _create_cell_coords(n_pyr_x, n_pyr_y, zdiff, inplane_distance):
"""Creates coordinate grid and place cells in it.
Parameters
----------
n_pyr_x : int
The number of Pyramidal cells in x direction.
n_pyr_y : int
The number of Pyramidal cells in y direction.
zdiff : float
Expressed as a positive DEPTH of L2 relative to L5 pyramidal cell
somas, where L5 is defined to lie at z==0. Interlaminar weight/delay
calculations (lamtha) are not affected. The basket cells are
arbitrarily placed slightly above (L5) and slightly below (L2) their
respective pyramidal cell layers.
inplane_distance : float
The grid spacing of pyramidal cells (in um). Note that basket cells are
placed in an uneven formation. Each one of them lies on a grid point
together with a pyramidal cell, though (overlapping).
Returns
-------
pos_dict : dict of list of tuple (x, y, z)
Dictionary containing coordinate positions.
Keys are 'L2_pyramidal', 'L5_pyramidal', 'L2_basket', 'L5_basket',
'common', or any of the elements of the list p_unique_keys
Notes
-----
Common positions are all located at origin.
Sort of a hack because of redundancy.
"""
def _calc_pyramidal_coord(xxrange, yyrange, zdiff):
list_coords = [pos for pos in it.product(xxrange, yyrange, [zdiff])]
return list_coords
def _calc_basket_coord(n_pyr_x, n_pyr_y, zdiff, inplane_distance, weight):
xzero = np.arange(0, n_pyr_x, 3) * inplane_distance
xone = np.arange(1, n_pyr_x, 3) * inplane_distance
# split even and odd y vals
yeven = np.arange(0, n_pyr_y, 2) * inplane_distance
yodd = np.arange(1, n_pyr_y, 2) * inplane_distance
# create general list of x,y coords and sort it
coords = [pos for pos in it.product(
xzero, yeven)] + [pos for pos in it.product(xone, yodd)]
coords_sorted = sorted(coords, key=lambda pos: pos[1])
# append the z value for position
list_coords = [(pos_xy[0], pos_xy[1], weight * zdiff)
for pos_xy in coords_sorted]
return list_coords
def _calc_origin(xxrange, yyrange, zdiff):
# origin's z component isn't used in calculating distance functions.
# will be used for adding external drives.
origin_x = xxrange[int((len(xxrange) - 1) // 2)]
origin_y = yyrange[int((len(yyrange) - 1) // 2)]
origin_z = np.floor(zdiff / 2)
origin = (origin_x, origin_y, origin_z)
return origin
# Calculate distances
xxrange = np.arange(n_pyr_x) * inplane_distance
yyrange = np.arange(n_pyr_y) * inplane_distance
pos_dict = {
'L5_pyramidal': _calc_pyramidal_coord(xxrange, yyrange, zdiff=0),
'L2_pyramidal': _calc_pyramidal_coord(xxrange, yyrange, zdiff=zdiff),
'L5_basket': _calc_basket_coord(n_pyr_x, n_pyr_y, zdiff,
inplane_distance, weight=0.2
),
'L2_basket': _calc_basket_coord(n_pyr_x, n_pyr_y, zdiff,
inplane_distance, weight=0.8
),
'origin': _calc_origin(xxrange, yyrange, zdiff),
}
return pos_dict
def _compare_lists(s, t):
"""
Compares lists for equality
From https://stackoverflow.com/a/7829388
"""
t = list(t) # make a mutable copy
try:
for elem in s:
t.remove(elem)
except ValueError:
return False
return not t
def _connection_probability(conn, probability, conn_seed=None):
"""Remove/keep a random subset of connections.
Parameters
----------
conn : Instance of _Connectivity object
Object specifying the biophysical parameters and src target pairs
of a specific connection class. Function modifies conn in place.
probability : float
Probability of connection between any src-target pair.
Defaults to 1.0 producing an all-to-all pattern.
conn_seed : int
Optional initial seed for random number generator (default: None).
Used to randomly remove connections when probability < 1.0.
Notes
-----
num_srcs and num_targets are not updated after pruning connections.
These variables are meant to describe the set of original connections
before they are randomly removed.
The probability attribute will store the most recent value passed to
this function. As such, this number does not accurately describe the
connections probability of the original set after successive calls.
"""
# Random number generator for random connection selection
rng = np.random.default_rng(conn_seed)
_validate_type(probability, float, 'probability')
if probability <= 0.0 or probability >= 1.0:
raise ValueError('probability must be in the range (0,1)')
# Flatten connections into a list of targets.
all_connections = np.concatenate(
[target_src_pair for
target_src_pair in conn['gid_pairs'].values()])
n_connections = np.round(
len(all_connections) * probability).astype(int)
# Select a random subset of connections to retain.
new_connections = rng.choice(
range(len(all_connections)), n_connections, replace=False)
remove_srcs = list()
connection_idx = 0
for src_gid, target_src_pair in conn['gid_pairs'].items():
target_new = list()
for target_gid in target_src_pair:
if connection_idx in new_connections:
target_new.append(target_gid)
connection_idx += 1
# Update targets for src_gid
if target_new:
conn['gid_pairs'][src_gid] = target_new
else:
remove_srcs.append(src_gid)
# Remove src_gids with no targets
for src_gid in remove_srcs:
conn['gid_pairs'].pop(src_gid)
[docs]def pick_connection(net, src_gids=None, target_gids=None,
loc=None, receptor=None):
"""Returns indices of connections that match search parameters.
Parameters
----------
net : Instance of Network object
The Network object
src_gids : str | int | range | list of int | None
Identifier for source cells. Passing str arguments
('L2_pyramidal', 'L2_basket', 'L5_pyramidal', 'L5_basket') is
equivalent to passing a list of gids for the relevant cell type.
source - target connections are made in an all-to-all pattern.
target_gids : str | int | range | list of int | None
Identifier for targets of source cells. Passing str arguments
('L2_pyramidal', 'L2_basket', 'L5_pyramidal', 'L5_basket') is
equivalent to passing a list of gids for the relevant cell type.
source - target connections are made in an all-to-all pattern.
loc : str | list of str | None
Location of synapse on target cell. Must be
'proximal', 'distal', or 'soma'. Note that inhibitory synapses
(receptor='gabaa' or 'gabab') of L2 pyramidal neurons are only
valid loc='soma'.
receptor : str | list of str | None
Synaptic receptor of connection. Must be one of:
'ampa', 'nmda', 'gabaa', or 'gabab'.
Returns
-------
conn_indices : list of int
List of indices corresponding to items in net.connectivity.
Connection indices are included if any of the provided parameter
values are present in a connection.
Notes
-----
Passing a list of values to a single parameter corresponds to a
logical OR operation across indices. For example,
loc=['distal', 'proximal'] returns all connections that target
distal or proximal dendrites.
Passing multiple parameters corresponds to a logical AND operation.
For example, net.pick_connection(loc='distal', receptor='ampa')
returns only the indices of connections that target the distal
dendrites and have ampa receptors.
"""
# Convert src and target gids to lists
valid_srcs = list(net.gid_ranges.keys()) # includes drives as srcs
valid_targets = list(net.cell_types.keys())
src_gids_checked = _check_gids(src_gids, net.gid_ranges,
valid_srcs, 'src_gids', same_type=False)
target_gids_checked = _check_gids(target_gids, net.gid_ranges,
valid_targets, 'target_gids',
same_type=False)
_validate_type(loc, (str, list, None), 'loc', 'str, list, or None')
_validate_type(receptor, (str, list, None), 'receptor',
'str, list, or None')
valid_loc = ['proximal', 'distal', 'soma']
valid_receptor = ['ampa', 'nmda', 'gabaa', 'gabab']
# Convert receptor and loc to list
loc_list = _string_input_to_list(loc, valid_loc, 'loc')
receptor_list = _string_input_to_list(receptor, valid_receptor, 'receptor')
# Create lookup dictionaries
src_dict, target_dict = defaultdict(list), defaultdict(list)
loc_dict, receptor_dict = defaultdict(list), defaultdict(list)
for conn_idx, conn in enumerate(net.connectivity):
# Store connections matching each src_gid
for src_gid in conn['src_gids']:
src_dict[src_gid].append(conn_idx)
# Store connections matching each target_gid
for target_gid in conn['target_gids']:
target_dict[target_gid].append(conn_idx)
# Store connections matching each location
loc_dict[conn['loc']].append(conn_idx)
# Store connections matching each receptor
receptor_dict[conn['receptor']].append(conn_idx)
# Look up conn indices that match search terms and add to set.
conn_set = set()
search_pairs = [(src_gids_checked, src_dict),
(target_gids_checked, target_dict),
(loc_list, loc_dict),
(receptor_list, receptor_dict),
]
for search_terms, search_dict in search_pairs:
if search_terms:
inner_set = set()
# Union of indices which match inputs for single parameter
for term in search_terms:
inner_set = inner_set.union(search_dict.get(term, list()))
# Empty search
if not inner_set:
return list()
# Initial search has results
elif inner_set and not conn_set:
conn_set = inner_set.copy()
# Subsequent searches have results
elif inner_set and conn_set:
# Intersect across parameters
conn_set = conn_set.intersection(inner_set)
# If at any point there's no matching elements, return empty
if not conn_set:
return list()
return sorted(conn_set)
[docs]class Network:
"""The Network class.
Parameters
----------
params : dict
The parameters to use for constructing the network.
add_drives_from_params : bool
If True, add drives as defined in the params-dict. NB this is mainly
for backward-compatibility with HNN GUI, and will be deprecated in a
future release. Default: False
legacy_mode : bool
Set to True by default to enable matching HNN GUI output when drives
are added suitably. Will be deprecated in a future release.
mesh_shape : tuple of int (default: (10, 10))
Defines the (n_x, n_y) shape of the grid of pyramidal cells.
Attributes
----------
cell_types : dict
Dictionary containing names of real cell types in the network
(e.g. 'L2_basket') as keys and corresponding Cell instances as values.
The Cell instance associated with a given key is used as a template
for the other cells of its type in the population.
gid_ranges : dict
A dictionary of unique identifiers of each real and artificial cell
in the network. Every cell type is represented by a key read from
cell_types, followed by keys read from external_drives. The value
of each key is a range of ints, one for each cell in given category.
Examples: 'L2_basket': range(0, 270), 'evdist1': range(272, 542), etc
pos_dict : dict
Dictionary containing the coordinate positions of all cells.
Keys are 'L2_pyramidal', 'L5_pyramidal', 'L2_basket', 'L5_basket',
or any external drive name
cell_response : CellResponse
An instance of the CellResponse object.
external_drives : dict (keys: drive names) of dict (keys: parameters)
The external driving inputs to the network. Drives are added by
defining their spike-time dynamics, and their connectivity to the real
cells of the network. Event times are instantiated before simulation,
and are stored under the ``'events'``-key (list of list; first
index for trials, second for event time lists for each drive cell).
external_biases : dict of dict (bias parameters for each cell type)
The parameters of bias inputs to cell somata, e.g., tonic current clamp
connectivity : list of dict
List of dictionaries specifying each cell-cell and drive-cell
connection
rec_arrays : dict
Stores electrode position information and voltages recorded by them
for extracellular potential measurements. Multiple electrode arrays
may be defined as unique keys. The values of the dictionary are
instances of :class:`hnn_core.extracellular.ExtracellularArray`.
threshold : float
Firing threshold of all cells.
delay : float
Synaptic delay in ms.
Notes
-----
``net = jones_2009_model(params)`` is the recommended path for creating a
network. Instantiating the network as ``net = Network(params)`` will
produce a network with no cell-to-cell connections. As such,
connectivity information contained in ``params`` will be ignored.
"""
def __init__(self, params, add_drives_from_params=False,
legacy_mode=False, mesh_shape=(10, 10)):
# Save the parameters used to create the Network
_validate_type(params, dict, 'params')
self._params = params
# Initialise a dictionary of cell ID's, which get used when the
# network is constructed ('built') in NetworkBuilder
# We want it to remain in each Network object, so that the user can
# interrogate a built and simulated net. In addition, CellResponse is
# attached to a Network during simulation---Network is the natural
# place to keep this information. Order matters: cell gids first, then
# artificial drive cells
self.gid_ranges = OrderedDict()
self._n_gids = 0 # utility: keep track of last GID
# XXX this can be removed once tests are made independent of HNN GUI
# creates nc_dict-entries for ALL cell types
self._legacy_mode = legacy_mode
if self._legacy_mode:
warnings.warn(
'Legacy mode is used solely to maintain compatibility with'
'.param files of the old HNN GUI. This feature will be '
'deprecrated in future releases.', DeprecationWarning,
stacklevel=1)
# Source dict of names, first real ones only!
cell_types = {
'L2_basket': basket(cell_name=_short_name('L2_basket')),
'L2_pyramidal': pyramidal(cell_name=_short_name('L2_pyramidal')),
'L5_basket': basket(cell_name=_short_name('L5_basket')),
'L5_pyramidal': pyramidal(cell_name=_short_name('L5_pyramidal'))
}
self.cell_response = None
# external drives and biases
self.external_drives = dict()
self.external_biases = dict()
# network connectivity
self.connectivity = list()
self.threshold = self._params['threshold']
self.delay = 1.0
# extracellular recordings (if applicable)
self.rec_arrays = dict()
# contents of pos_dict determines all downstream inferences of
# cell counts, real and artificial
self._n_cells = 0 # used in tests and MPIBackend checks
self.pos_dict = dict()
self.cell_types = dict()
# set the mesh shape
_validate_type(mesh_shape, tuple, 'mesh_shape')
_validate_type(mesh_shape[0], int, 'mesh_shape[0]')
_validate_type(mesh_shape[1], int, 'mesh_shape[1]')
if mesh_shape[0] < 1 or mesh_shape[1] < 1:
raise ValueError('mesh_shape must be a tuple of positive '
f'integers, got: {mesh_shape}')
self._N_pyr_x = mesh_shape[0]
self._N_pyr_y = mesh_shape[1]
self._inplane_distance = 1.0 # XXX hard-coded default
self._layer_separation = 1307.4 # XXX hard-coded default
self.set_cell_positions(inplane_distance=self._inplane_distance,
layer_separation=self._layer_separation)
# populates self.gid_ranges for the 1st time: order matters for
# NetworkBuilder!
for cell_name in cell_types:
self._add_cell_type(cell_name, self.pos_dict[cell_name],
cell_template=cell_types[cell_name])
if add_drives_from_params:
_add_drives_from_params(self)
self._tstop = None
self._dt = None
[docs] def __repr__(self):
class_name = self.__class__.__name__
s = ("%d x %d Pyramidal cells (L2, L5)"
% (self._N_pyr_x, self._N_pyr_y))
s += ("\n%d L2 basket cells\n%d L5 basket cells"
% (len(self.pos_dict['L2_basket']),
len(self.pos_dict['L5_basket'])))
return '<%s | %s>' % (class_name, s)
def __eq__(self, other):
if not isinstance(other, Network):
return NotImplemented
# Check connectivity
if ((len(self.connectivity) != len(other.connectivity)) or
not (_compare_lists(self.connectivity, other.connectivity))):
return False
# Check all other attributes
attrs_to_ignore = ['connectivity']
for attr in vars(self).keys():
if attr.startswith('_') or attr in attrs_to_ignore:
continue
if hasattr(self, attr) and hasattr(other, attr):
if getattr(self, attr) != getattr(other, attr):
return False
else:
# Does not have the same set of attributes
return False
return True
[docs] def set_cell_positions(self, *, inplane_distance=None,
layer_separation=None):
"""Set relative positions of cells arranged in a square grid
Note that it is possible to change only a subset of the parameters
(the default value of each is None, which implies no change).
Parameters
----------
inplane_distance : float
The in plane-distance (in um) between pyramidal cell somas in the
square grid. Note that this parameter does not affect the amplitude
of the dipole moment.
layer_separation : float
The separation of pyramidal cell soma layers 2/3 and 5. Note that
this parameter does not affect the amplitude of the dipole moment.
"""
if inplane_distance is None:
inplane_distance = self._inplane_distance
_validate_type(inplane_distance, (float, int), 'inplane_distance')
if not inplane_distance > 0.:
raise ValueError('In-plane distance must be positive, '
f'got: {inplane_distance}')
if layer_separation is None:
layer_separation = self._layer_separation
_validate_type(layer_separation, (float, int), 'layer_separation')
if not layer_separation > 0.:
raise ValueError('Layer separation must be positive, '
f'got: {layer_separation}')
pos = _create_cell_coords(n_pyr_x=self._N_pyr_x, n_pyr_y=self._N_pyr_y,
zdiff=layer_separation,
inplane_distance=inplane_distance)
# update positions of the real cells
for key in pos.keys():
self.pos_dict[key] = pos[key]
# update drives to be positioned at network origin
for drive_name, drive in self.external_drives.items():
pos = [self.pos_dict['origin']] * drive['n_drive_cells']
self.pos_dict[drive_name] = pos
self._inplane_distance = inplane_distance
self._layer_separation = layer_separation
[docs] def copy(self):
"""Return a copy of the Network instance
The returned copy retains the intrinsic connectivity between cells, as
well as those of any external drives or biases added to the network.
The parameters of drive dynamics are also retained, but the
instantiated ``events`` of the drives are cleared. This allows
iterating over the values defining drive dynamics, without the need to
re-define connectivity. Extracellular recording arrays are retained in
the network, but cleared of existing data.
Returns
-------
net_copy : instance of Network
A copy of the instance with previous simulation results and
``events`` of external drives removed.
"""
net_copy = deepcopy(self)
net_copy._reset_drives()
net_copy._reset_rec_arrays()
return net_copy
[docs] def add_evoked_drive(self, name, *, mu, sigma, numspikes, location,
n_drive_cells='n_cells', cell_specific=True,
weights_ampa=None, weights_nmda=None,
space_constant=3., synaptic_delays=0.1,
probability=1.0, event_seed=2, conn_seed=3):
"""Add an 'evoked' external drive to the network
Parameters
----------
name : str
Unique name for the drive
mu : float
Mean of Gaussian event time distribution
sigma : float
Standard deviation of event time distribution
numspikes : int
Number of spikes at each target cell
location : str
Target location of synapses. Must be an element of
`Cell.sect_loc` such as 'proximal' or 'distal', which defines a
group of sections, or an existing section such as 'soma' or
'apical_tuft' (defined in `Cell.sections` for all targeted cells).
The parameter `legacy_mode` of the `Network` must be set to `False`
to target specific sections.
n_drive_cells : int | 'n_cells'
The number of drive cells that each contribute an independently
sampled synaptic spike to the network according to the Gaussian
time distribution (mu, sigma). If n_drive_cells='n_cells'
(default) and cell_specific=True, a drive cell gets assigned to
each available simulated cell in the network with 1-to-1
connectivity. Otherwise, drive cells are assigned with
all-to-all connectivity. If you wish to synchronize the timing of
this evoked drive across the network in a given trial with one
spike, set n_drive_cells=1 and cell_specific=False.
cell_specific : bool
Whether each artificial drive cell has 1-to-1 (True, default) or
all-to-all (False) connection parameters. Note that 1-to-1
connectivity requires that n_drive_cells='n_cells', where 'n_cells'
denotes the number of all available cells that this drive can
target in the network.
weights_ampa : dict or None
Synaptic weights (in uS) of AMPA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
weights_nmda : dict or None
Synaptic weights (in uS) of NMDA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
synaptic_delays : dict or float
Synaptic delay (in ms) at the column origin, dispersed laterally as
a function of the space_constant. If float, applies to all target
cell types. Use dict to create delay->cell mapping.
space_constant : float
Describes lateral dispersion (from the column origin) of synaptic
weights and delays within the simulated column. The constant is
measured in the units of ``inplane_distance`` of
:class:`~hnn_core.Network`. For example, for ``space_constant=3``,
the weights are modulated by the factor
``exp(-(x / (3 * inplane_distance)) ** 2)``, where x is the
physical distance (in um) between the connected cells in the xy
plane (delays are modulated by the inverse of this factor).
probability : dict or float (default: 1.0)
Probability of connection between any src-target pair.
Use dict to create probability->cell mapping. If float, applies to
all target cell types
event_seed : int
Optional initial seed for random number generator (default: 2).
Used to generate event times for drive cells.
Not fixed across trials (see Notes)
conn_seed : int
Optional initial seed for random number generator (default: 3).
Used to randomly remove connections when probability < 1.0.
Fixed across trials (see Notes)
Notes
-----
Random seeding behavior across trials is different for event_seed
and conn_seed (n_trials > 1 in simulate_dipole(..., n_trials):
- event_seed
Across trials, the random seed is incremented leading such that
the exact spike times are different
- conn_seed
The random seed does not change across trials. This means for
probability < 1.0, the random subset of gids targeted is the same.
"""
if not self._legacy_mode:
_check_drive_parameter_values('evoked', sigma=sigma,
numspikes=numspikes)
drive = _NetworkDrive()
drive['type'] = 'evoked'
drive['location'] = location
if name == 'extgauss':
drive['type'] = 'gaussian' # XXX needed to pass legacy tests!
drive['n_drive_cells'] = n_drive_cells
drive['event_seed'] = event_seed
drive['conn_seed'] = conn_seed
drive['dynamics'] = dict(mu=mu, sigma=sigma, numspikes=numspikes)
drive['events'] = list()
# Need to save this information
drive['weights_ampa'] = weights_ampa
drive['weights_nmda'] = weights_nmda
drive['synaptic_delays'] = synaptic_delays
drive['probability'] = probability
self._attach_drive(name, drive, weights_ampa, weights_nmda, location,
space_constant, synaptic_delays,
n_drive_cells, cell_specific, probability)
[docs] def add_poisson_drive(self, name, *, tstart=0, tstop=None, rate_constant,
location, n_drive_cells='n_cells',
cell_specific=True, weights_ampa=None,
weights_nmda=None, space_constant=100.,
synaptic_delays=0.1, probability=1.0, event_seed=2,
conn_seed=3):
"""Add a Poisson-distributed external drive to the network
Parameters
----------
name : str
Unique name for the drive
tstart : float
Start time of Poisson-distributed spike train (default: 0)
tstop : float
End time of the spike train (defaults to None: tstop is set to the
end of the simulation)
rate_constant : float or dict of floats
Rate constant (lambda > 0) of the renewal-process generating the
samples. If a float is provided, the same rate constant is applied
to each target cell type. Cell type-specific values may be
provided as a dictionary, in which a key must be present for each
cell type with non-zero AMPA or NMDA weights.
location : str
Target location of synapses. Must be an element of
`Cell.sect_loc` such as 'proximal' or 'distal', which defines a
group of sections, or an existing section such as 'soma' or
'apical_tuft' (defined in `Cell.sections` for all targeted cells).
The parameter `legacy_mode` of the `Network` must be set to `False`
to target specific sections.
n_drive_cells : int | 'n_cells'
The number of drive cells that each contribute an independently
sampled synaptic spike to the network according to a Poisson
process. If n_drive_cells='n_cells' (default) and
cell_specific=True, a drive cell gets assigned to each available
simulated cell in the network with 1-to-1 connectivity. Otherwise,
drive cells are assigned with all-to-all connectivity. If you wish
to synchronize the timing of Poisson drive across the network in a
given trial, set n_drive_cells=1 and cell_specific=False.
cell_specific : bool
Whether each artificial drive cell has 1-to-1 (True, default) or
all-to-all (False) connection parameters. Note that 1-to-1
connectivity requires that n_drive_cells='n_cells', where 'n_cells'
denotes the number of all available cells that this drive can
target in the network.
weights_ampa : dict or None
Synaptic weights (in uS) of AMPA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
weights_nmda : dict or None
Synaptic weights (in uS) of NMDA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
synaptic_delays : dict or float
Synaptic delay (in ms) at the column origin, dispersed laterally as
a function of the space_constant. If float, applies to all target
cell types. Use dict to create delay->cell mapping.
space_constant : float
Describes lateral dispersion (from the column origin) of synaptic
weights and delays within the simulated column. The constant is
measured in the units of ``inplane_distance`` of
:class:`~hnn_core.Network`. For example, for ``space_constant=3``,
the weights and delays are modulated by the factor
``exp(-(x / (3 * inplane_distance)) ** 2)``, where ``x`` is the
physical distance (in um) between the connected cells in the xy
plane.
probability : dict or float (default: 1.0)
Probability of connection between any src-target pair.
Use dict to create probability->cell mapping. If float, applies to
all target cell types.
event_seed : int
Optional initial seed for random number generator (default: 2).
Used to generate event times for drive cells.
conn_seed : int
Optional initial seed for random number generator (default: 3).
Used to randomly remove connections when probability < 1.0.
"""
_check_drive_parameter_values('Poisson', tstart=tstart,
tstop=tstop)
target_populations = _get_target_properties(weights_ampa,
weights_nmda,
synaptic_delays,
location)[0]
_check_poisson_rates(rate_constant, target_populations,
self.cell_types.keys())
if isinstance(rate_constant, dict):
if not cell_specific:
raise ValueError(f"Drives specific to cell types are only "
f"possible with cell_specific=True and "
f"n_drive_cells='n_cells'. Got cell_specific"
f" cell_specific={cell_specific} and "
f"n_drive_cells={n_drive_cells}.")
elif isinstance(rate_constant, (float, int)):
if cell_specific:
rate_constant = {cell_type: rate_constant for cell_type in
target_populations}
drive = _NetworkDrive()
drive['type'] = 'poisson'
drive['location'] = location
drive['n_drive_cells'] = n_drive_cells
drive['event_seed'] = event_seed
drive['conn_seed'] = conn_seed
drive['dynamics'] = dict(tstart=tstart, tstop=tstop,
rate_constant=rate_constant)
drive['events'] = list()
# Need to save this information
drive['weights_ampa'] = weights_ampa
drive['weights_nmda'] = weights_nmda
drive['synaptic_delays'] = synaptic_delays
drive['probability'] = probability
self._attach_drive(name, drive, weights_ampa, weights_nmda, location,
space_constant, synaptic_delays,
n_drive_cells, cell_specific, probability)
[docs] def add_bursty_drive(self, name, *, tstart=0, tstart_std=0, tstop=None,
location, burst_rate, burst_std=0, numspikes=2,
spike_isi=10, n_drive_cells=1, cell_specific=False,
weights_ampa=None, weights_nmda=None,
synaptic_delays=0.1, space_constant=100.,
probability=1.0, event_seed=2, conn_seed=3):
"""Add a bursty (rhythmic) external drive to all cells of the network
Parameters
----------
name : str
Unique name for the drive
tstart : float
Start time of the burst trains (default: 0)
tstart_std : float
If greater than 0, randomize start time with standard deviation
tstart_std (unit: ms). Effectively jitters start time across
multiple trials.
tstop : float
End time of burst trains (defaults to None: tstop is set to the
end of the simulation)
location : str
Target location of synapses. Must be an element of
`Cell.sect_loc` such as 'proximal' or 'distal', which defines a
group of sections, or an existing section such as 'soma' or
'apical_tuft' (defined in `Cell.sections` for all targeted cells).
The parameter `legacy_mode` of the `Network` must be set to `False`
to target specific sections.
burst_rate : float
The mean rate at which cyclic bursts occur (unit: Hz)
burst_std : float
The standard deviation of the burst occurrence on each cycle
(unit: ms). Default: 0 ms
numspikes : int
The number of spikes in a burst. This is the spikes/burst parameter
in the GUI. Default: 2 (doublet)
spike_isi : float
Time between spike events within a cycle (ISI). Default: 10 ms
n_drive_cells : int | 'n_cells'
The number of drive cells that contribute an independently sampled
burst at each cycle. If n_drive_cells='n_cells' and
cell_specific=True, a drive cell gets assigned to
each available simulated cell in the network with 1-to-1
connectivity. Otherwise (default: 1), drive cells are assigned with
all-to-all connectivity and provide synchronous input to cells in
the network.
cell_specific : bool
Whether each artificial drive cell has 1-to-1 (True) or all-to-all
(False, default) connection parameters. Note that 1-to-1
connectivity requires that n_drive_cells='n_cells', where 'n_cells'
denotes the number of all available cells that this drive can
target in the network.
weights_ampa : dict or None
Synaptic weights (in uS) of AMPA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
weights_nmda : dict or None
Synaptic weights (in uS) of NMDA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
synaptic_delays : dict or float
Synaptic delay (in ms) at the column origin, dispersed laterally as
a function of the space_constant. If float, applies to all target
cell types. Use dict to create delay->cell mapping.
space_constant : float
Describes lateral dispersion (from the column origin) of synaptic
weights and delays within the simulated column. The constant is
measured in the units of ``inplane_distance`` of
:class:`~hnn_core.Network`. For example, for ``space_constant=3``,
the weights and delays are modulated by the factor
``exp(-(x / (3 * inplane_distance)) ** 2)``, where ``x`` is the
physical distance (in um) between the connected cells in the xy
plane.
probability : dict or float (default: 1.0)
Probability of connection between any src-target pair.
Use dict to create probability->cell mapping. If float, applies to
all target cell types.
event_seed : int
Optional initial seed for random number generator (default: 2).
Used to generate event times for drive cells.
conn_seed : int
Optional initial seed for random number generator (default: 3).
Used to randomly remove connections when probability < 1.0.
"""
if not self._legacy_mode:
_check_drive_parameter_values('bursty', tstart=tstart, tstop=tstop,
sigma=tstart_std, location=location)
_check_drive_parameter_values('bursty', sigma=burst_std,
numspikes=numspikes,
spike_isi=spike_isi,
burst_rate=burst_rate)
drive = _NetworkDrive()
drive['type'] = 'bursty'
drive['location'] = location
drive['n_drive_cells'] = n_drive_cells
drive['event_seed'] = event_seed
drive['conn_seed'] = conn_seed
drive['dynamics'] = dict(tstart=tstart,
tstart_std=tstart_std, tstop=tstop,
burst_rate=burst_rate, burst_std=burst_std,
numspikes=numspikes, spike_isi=spike_isi)
drive['events'] = list()
# Need to save this information
drive['weights_ampa'] = weights_ampa
drive['weights_nmda'] = weights_nmda
drive['synaptic_delays'] = synaptic_delays
drive['probability'] = probability
self._attach_drive(name, drive, weights_ampa, weights_nmda, location,
space_constant, synaptic_delays,
n_drive_cells, cell_specific, probability)
def _attach_drive(self, name, drive, weights_ampa, weights_nmda, location,
space_constant, synaptic_delays, n_drive_cells,
cell_specific, probability):
"""Attach a drive to network based on connectivity information
Parameters
----------
name : str
Name of drive (must be unique)
drive : instance of _NetworkDrive
Collection of parameters defining the dynamics of the drive
weights_ampa : dict or None
Synaptic weights (in uS) of AMPA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
weights_nmda : dict or None
Synaptic weights (in uS) of NMDA receptors on each targeted cell
type (dict keys). Cell types omitted from the dict are set to zero.
location : str
Target location of synapses. Must be an element of
`Cell.sect_loc` such as 'proximal' or 'distal', which defines a
group of sections, or an existing section such as 'soma' or
'apical_tuft' (defined in `Cell.sections` for all targeted cells).
The parameter `legacy_mode` of the `Network` must be set to `False`
to target specific sections.
space_constant : float
Describes lateral dispersion (from the column origin) of synaptic
weights and delays within the simulated column. The constant is
measured in the units of ``inplane_distance`` of
:class:`~hnn_core.Network`. For example, for ``space_constant=3``,
the weights and delays are modulated by the factor
``exp(-(x / (3 * inplane_distance)) ** 2)``, where ``x`` is the
physical distance (in um) between the connected cells in the xy
plane.
synaptic_delays : dict or float
Synaptic delay (in ms) at the column origin, dispersed laterally as
a function of the space_constant
n_drive_cells : int | 'n_cells'
The number of drive cells (i.e., ArtificialCell objects) that
contribute to this drive. If n_drive_cells='n_cells' and
cell_specific=True, an artificial drive cell gets assigned to each
available cell in the network with 1-to-1 connectivity (completely
unsynchronous). Otherwise, drive cells get assigned with all-to-all
connectivity. If you wish to synchronize the timing of this evoked
drive across the network in a given trial with one spike, set
n_drive_cells=1 and cell_specific=False.
cell_specific : bool
Whether each artificial drive cell has 1-to-1 (True) or all-to-all
(False) connection parameters. Note that 1-to-1
connectivity requires that n_drive_cells='n_cells', where 'n_cells'
denotes the number of all available cells that this drive can
target in the network.
probability : dict or float (default: 1.0)
Probability of connection between any src-target pair.
Use dict to create probability->cell mapping. If float, applies to
all target cell types
Attached drive is stored in self.external_drives[name]
self.pos_dict is updated, and self._update_gid_ranges() called
"""
if name in self.external_drives:
raise ValueError(f"Drive {name} already defined")
_validate_type(
probability, (float, dict), 'probability', 'float or dict')
# allow passing weights as None, convert to dict here
(target_populations, weights_by_type, delays_by_type,
probability_by_type) = \
_get_target_properties(weights_ampa, weights_nmda, synaptic_delays,
location, probability)
# weights passed must correspond to cells in the network
if not target_populations.issubset(set(self.cell_types.keys())):
raise ValueError('Allowed drive target cell types are: ',
f'{self.cell_types.keys()}')
# enforce the same order as in self.cell_types - necessary for
# consistent source gid assignment
target_populations = [cell_type for cell_type in self.cell_types.keys()
if cell_type in target_populations]
# Ensure location exists for all target cells
cell_sections = [set(self.cell_types[cell_type].sections.keys()) for
cell_type in target_populations]
sect_locs = [set(self.cell_types[cell_type].sect_loc.keys()) for
cell_type in target_populations]
valid_cell_sections = set.intersection(*cell_sections)
valid_sect_locs = set.intersection(*sect_locs)
valid_loc = list(valid_cell_sections) + list(valid_sect_locs)
_check_option('location', location, valid_loc,
extra=(f" (the location '{location}' is not defined "
"for one of the targeted cells)"))
if self._legacy_mode:
# allows tests must match HNN GUI output by preserving original
# gid assignment convention
target_populations = list(self.cell_types.keys())
for target_type in target_populations:
if target_type not in weights_by_type:
weights_by_type.update({target_type: {'ampa': 0.}})
if target_type not in delays_by_type:
delays_by_type.update({target_type: 0.1})
if target_type not in probability_by_type:
probability_by_type.update({target_type: 1.0})
elif len(target_populations) == 0:
raise ValueError('No target populations have been specified for '
'this drive.')
if cell_specific and n_drive_cells != 'n_cells':
raise ValueError(f"If cell_specific is True, n_drive_cells must"
f" equal 'n_cells'. Got {n_drive_cells}.")
elif not cell_specific:
if not isinstance(n_drive_cells, int):
raise ValueError(f"If cell_specific is False, n_drive_cells "
f"must be of type int. Got "
f"{type(n_drive_cells)}.")
if not n_drive_cells > 0:
raise ValueError('Number of drive cells must be greater than '
f'0. Got {n_drive_cells}.')
drive['name'] = name # for easier for-looping later
drive['target_types'] = target_populations # for _connect_celltypes
drive['cell_specific'] = cell_specific
if n_drive_cells == 'n_cells':
n_drive_cells = 0
for cell_type in target_populations:
n_drive_cells += len(self.gid_ranges[cell_type])
drive['n_drive_cells'] = n_drive_cells
self.external_drives[name] = drive
pos = [self.pos_dict['origin']] * n_drive_cells
self._add_cell_type(name, pos)
# Set the starting index for cell-specific source gids
# This will be updated depending on the number of target cells
# of each cell type
src_idx = 0
# seed_increment increased by 1 for each target cell type,
# added to conn_seed to ensure statistical independence of random
# connections when probability < 1.0
for seed_increment, target_cell_type in enumerate(target_populations):
target_gids = list(self.gid_ranges[target_cell_type])
delays = delays_by_type[target_cell_type]
probability = probability_by_type[target_cell_type]
if cell_specific:
target_gids_nested = [[target_gid] for
target_gid in target_gids]
src_idx_end = src_idx + len(target_gids)
src_gids = (list(self.gid_ranges[name])
[src_idx:src_idx_end])
src_idx = src_idx_end
for receptor_idx, receptor in enumerate(
weights_by_type[target_cell_type]):
weights = weights_by_type[target_cell_type][receptor]
self.add_connection(
src_gids=src_gids, target_gids=target_gids_nested,
loc=location, receptor=receptor, weight=weights,
delay=delays, lamtha=space_constant,
probability=probability,
conn_seed=drive['conn_seed'] + seed_increment)
# Ensure that AMPA/NMDA connections target the same gids
if receptor_idx > 0:
self.connectivity[-1]['src_gids'] = \
self.connectivity[-2]['src_gids']
else:
for receptor_idx, receptor in enumerate(
weights_by_type[target_cell_type]):
weights = weights_by_type[target_cell_type][receptor]
self.add_connection(
src_gids=name, target_gids=target_gids, loc=location,
receptor=receptor, weight=weights, delay=delays,
lamtha=space_constant, probability=probability,
conn_seed=drive['conn_seed'] + seed_increment)
# Ensure that AMPA/NMDA connections target the same gids
# when probability < 1
if receptor_idx > 0:
self.connectivity[-1]['src_gids'] = \
self.connectivity[-2]['src_gids']
def _reset_drives(self):
# reset every time called again, e.g., from dipole.py or in self.copy()
for drive_name in self.external_drives.keys():
self.external_drives[drive_name]['events'] = list()
def _reset_rec_arrays(self):
# clear the data in rec_arrays
for arr in self.rec_arrays.values():
arr._reset()
def _instantiate_drives(self, tstop, n_trials=1):
"""Creates event time vectors for all drives across trials
Parameters
----------
tstop : float
The simulation stop time (ms)
n_trials : int
Number of trials to create events for (default: 1)
NB this must be a separate method because dipole.py:simulate_dipole
accepts an n_trials-argument, which overrides the N_trials-parameter
used at initialisation time. The good news is that only the event_times
need to be recalculated, all the GIDs etc remain the same.
"""
self._reset_drives()
# each trial needs unique event time vectors
for trial_idx in range(n_trials):
for drive in self.external_drives.values():
event_times = list() # new list for each trial and drive
for drive_cell_gid in self.gid_ranges[drive['name']]:
drive_cell_gid_offset = (drive_cell_gid -
self.gid_ranges[drive['name']][0])
trial_seed_offset = self._n_gids
if drive['cell_specific']:
# loop over drives (one for each target cell
# population) and create event times
conn_idxs = pick_connection(self,
src_gids=drive_cell_gid)
target_types = set([self.connectivity[conn_idx]
['target_type'] for conn_idx in
conn_idxs])
for target_type in target_types:
event_times.append(_drive_cell_event_times(
drive['type'],
drive['dynamics'],
target_type=target_type,
trial_idx=trial_idx,
drive_cell_gid=drive_cell_gid_offset,
event_seed=drive['event_seed'],
tstop=tstop,
trial_seed_offset=trial_seed_offset)
)
else:
src_event_times = _drive_cell_event_times(
drive['type'],
drive['dynamics'],
tstop=tstop,
target_type='any',
trial_idx=trial_idx,
drive_cell_gid=drive_cell_gid_offset,
event_seed=drive['event_seed'],
trial_seed_offset=trial_seed_offset)
event_times.append(src_event_times)
# 'events': nested list (n_trials x n_drive_cells x n_events)
self.external_drives[
drive['name']]['events'].append(event_times)
[docs] def add_tonic_bias(self, *, cell_type=None, amplitude, t0=0, tstop=None):
"""Attaches parameters of tonic bias input for given cell types
Parameters
----------
cell_types : str | None
The name of the cell type to add a tonic input. When supplied,
a float value must be provided with the `amplitude` keyword.
Valid inputs are those listed in `net.cell_types`.
amplitude: dict | float
A dictionary of cell type keys (str) to amplitude values (float).
Valid inputs for cell types are those listed in `net.cell_types`.
If `cell_types` is not None, `amplitude` should be
a float indicating the amplitude of the tonic input
for the specified cell type.
t0 : float
The start time of tonic input (in ms). Default: 0 (beginning of
simulation). This value will be applied to all the tonic biases if
multiple are specified with the `amplitude` keyword.
tstop : float
The end time of tonic input (in ms). Default: end of simulation.
This value will be applied to all the tonic biases if
multiple are specified with the `amplitude` keyword.
"""
# old functionality single cell type - amplitude
if cell_type is not None:
warnings.warn('cell_type argument will be deprecated and '
'removed in future releases. Use amplitude as a '
'cell_type:str,amplitude:float dictionary.'
'Read the function docustring for more information',
DeprecationWarning,
stacklevel=1)
_validate_type(amplitude, (float, int), 'amplitude')
_add_cell_type_bias(network=self, cell_type=cell_type,
amplitude=float(amplitude),
t_0=t0, t_stop=tstop)
else:
_validate_type(amplitude, dict, 'amplitude')
if len(amplitude) == 0:
warnings.warn('No bias have been defined, no action taken',
UserWarning, stacklevel=1)
return
for _cell_type, _amplitude in amplitude.items():
_add_cell_type_bias(network=self, cell_type=_cell_type,
amplitude=_amplitude,
t_0=t0, t_stop=tstop)
def _add_cell_type(self, cell_name, pos, cell_template=None):
"""Add cell type by updating pos_dict and gid_ranges."""
ll = self._n_gids
self._n_gids += len(pos)
self.gid_ranges[cell_name] = range(ll, self._n_gids)
self.pos_dict[cell_name] = pos
if cell_template is not None:
self.cell_types.update({cell_name: cell_template})
self._n_cells += len(pos)
[docs] def gid_to_type(self, gid):
"""Reverse lookup of gid to type."""
return _gid_to_type(gid, self.gid_ranges)
[docs] def add_connection(self, src_gids, target_gids, loc, receptor,
weight, delay, lamtha, allow_autapses=True,
probability=1.0, conn_seed=None):
"""Appends connections to connectivity list
Parameters
----------
src_gids : str | int | range | list of int
Identifier for source cells. Passing str arguments ('evdist1',
'L2_pyramidal', 'L2_basket', 'L5_pyramidal', 'L5_basket', etc.) is
equivalent to passing a list of gids for the relevant cell type.
source - target connections are made in an all-to-all pattern.
target_gids : str | int | range | list of int
Identifier for targets of source cells. Passing str arguments
('L2_pyramidal', 'L2_basket', 'L5_pyramidal', 'L5_basket') is
equivalent to passing a list of gids for the relevant cell type.
source - target connections are made in an all-to-all pattern.
loc : str
Target location of synapses. Must be an element of
`Cell.sect_loc` such as 'proximal' or 'distal', which defines a
group of sections, or an existing section such as 'soma' or
'apical_tuft' (defined in `Cell.sections` for all targeted cells).
The parameter `legacy_mode` of the `Network` must be set to `False`
to target specific sections.
receptor : str
Synaptic receptor of connection. Must be one of:
'ampa', 'nmda', 'gabaa', or 'gabab'.
weight : float
Synaptic weight on target cell.
delay : float
Synaptic delay in ms.
lamtha : float
Space constant.
allow_autapses : bool
If True, allow connecting neuron to itself.
probability : float
Probability of connection between any src-target pair.
Defaults to 1.0 producing an all-to-all pattern.
conn_seed : int
Optional initial seed for random number generator (default: None).
Used to randomly remove connections when probability < 1.0.
Notes
-----
Connections are stored in ``net.connectivity[idx]['gid_pairs']``, a
dictionary indexed by src gids with the format:
{src_gid: [target_gids, ...], ...} where each src_gid indexes a list of
all its targets.
"""
conn = _Connectivity()
threshold = self.threshold
_validate_type(target_gids, (int, list, range, str), 'target_gids',
'int list, range or str')
_validate_type(allow_autapses, bool, 'target_gids', 'bool')
valid_source_cells = list(self.gid_ranges.keys())
# Convert src_gids to list
src_gids = _check_gids(src_gids, self.gid_ranges,
valid_source_cells, 'src_gids')
# Convert target_gids to list of list, one element for each src_gid
valid_target_cells = list(self.cell_types.keys())
if isinstance(target_gids, int):
target_gids = [[target_gids] for _ in range(len(src_gids))]
elif isinstance(target_gids, str):
_check_option('target_gids', target_gids, valid_target_cells)
target_gids = [list(self.gid_ranges[_long_name(target_gids)])
for _ in range(len(src_gids))]
elif isinstance(target_gids, range):
target_gids = [list(target_gids) for _ in range(len(src_gids))]
elif isinstance(target_gids, list) and all(isinstance(t_gid, int)
for t_gid in target_gids):
target_gids = [target_gids for _ in range(len(src_gids))]
# Validate each target list - src pairs.
# set() used to avoid redundant checks.
target_set = set()
for target_src_pair in target_gids:
_validate_type(target_src_pair, list, 'target_gids[idx]',
'list or range')
for target_gid in target_src_pair:
target_set.add(target_gid)
target_type = self.gid_to_type(target_gids[0][0])
for target_gid in target_set:
_validate_type(target_gid, int, 'target_gid', 'int')
# Ensure gids in range of Network.gid_ranges
gid_type = self.gid_to_type(target_gid)
if gid_type is None:
raise AssertionError(
f'target_gid {target_gid}''not in net.gid_ranges')
elif gid_type != target_type:
raise AssertionError(
'All target_gids must be of the same type')
conn['target_type'] = target_type
conn['target_gids'] = target_set
conn['num_targets'] = len(target_set)
if len(target_gids) != len(src_gids):
raise AssertionError('target_gids must have a list for each src.')
# Format gid_pairs and add to conn dictionary
gid_pairs = dict()
for src_gid, target_src_pair in zip(src_gids, target_gids):
if not allow_autapses:
mask = np.isin(target_src_pair, src_gid, invert=True)
target_src_pair = np.array(target_src_pair)[mask].tolist()
gid_pairs[src_gid] = target_src_pair
conn['src_type'] = self.gid_to_type(src_gids[0])
conn['src_gids'] = set(src_gids)
conn['num_srcs'] = len(src_gids)
conn['gid_pairs'] = gid_pairs
# Validate string inputs
_validate_type(loc, str, 'loc')
_validate_type(receptor, str, 'receptor')
target_sect_loc = self.cell_types[target_type].sect_loc
target_sections = self.cell_types[target_type].sections
valid_loc = list(
target_sect_loc.keys()) + list(target_sections.keys())
_check_option('loc', loc, valid_loc,
extra=(f" (the loc '{loc}' is not defined "
f"for '{target_type}' cells)"))
conn['loc'] = loc
# `loc` specifies a group of sections, all must contain the synapse
# specified by `receptor`
if loc in target_sect_loc:
for sec_name in target_sect_loc[loc]:
valid_receptor = target_sections[sec_name].syns
_check_option('receptor', receptor, valid_receptor,
extra=f" (the '{receptor}' receptor is not "
f"defined for the '{sec_name}' of"
f"'{target_type}' cells)")
# `loc` specifies an individual section
else:
valid_receptor = target_sections[loc].syns
_check_option('receptor', receptor, valid_receptor,
extra=f"(the '{receptor}' receptor is not "
f"defined for the '{loc}' of"
f"'{target_type}' cells)")
conn['receptor'] = receptor
# Create and validate nc_dict
conn['nc_dict'] = dict()
arg_names = ['delay', 'weight', 'lamtha', 'threshold']
nc_dict_keys = ['A_delay', 'A_weight', 'lamtha', 'threshold']
nc_conn_items = [delay, weight, lamtha, threshold]
for key, arg_name, item in zip(nc_dict_keys, arg_names, nc_conn_items):
_validate_type(item, (int, float), arg_name, 'int or float')
conn['nc_dict'][key] = item
conn['nc_dict']['gain'] = 1.0
# Probabilistically define connections
if probability != 1.0:
_connection_probability(conn, probability, conn_seed)
conn['probability'] = probability
conn['allow_autapses'] = allow_autapses
self.connectivity.append(deepcopy(conn))
[docs] def clear_connectivity(self):
"""Remove all connections defined in Network.connectivity
"""
connectivity = list()
for conn in self.connectivity:
if conn['src_type'] in self.external_drives.keys():
connectivity.append(conn)
self.connectivity = connectivity
[docs] def clear_drives(self):
"""Remove all drives defined in Network.connectivity"""
self.connectivity = [conn for conn in self.connectivity if
conn['src_type'] not
in self.external_drives.keys()]
for cell_name in list(self.gid_ranges.keys()):
if cell_name in self.external_drives:
self._n_gids -= len(self.gid_ranges[cell_name])
del self.gid_ranges[cell_name]
del self.pos_dict[cell_name]
self.external_drives = dict()
[docs] def add_electrode_array(self, name, electrode_pos, *, conductivity=0.3,
method='psa', min_distance=0.5):
"""Specify coordinates of electrode array for extracellular recording.
Parameters
----------
name : str
Unique name of the array.
electrode_pos : tuple | list of tuple
Coordinates specifying the position for extracellular electrodes in
the form of (x, y, z) (in um).
conductivity : float
Extracellular conductivity, in S/m, of the assumed infinite,
homogeneous volume conductor that the cell and electrode are in.
method : str
Approximation to use. ``'psa'`` (point source approximation) treats
each segment junction as a point extracellular current source.
``'lsa'`` (line source approximation) treats each segment as a line
source of current, which extends from the previous to the next
segment center point: /---x---/, where x is the current segment
flanked by /.
min_distance : float (default: 0.5; unit: um)
To avoid numerical errors in calculating potentials, apply a
minimum distance limit between the electrode contacts and the
active neuronal membrane elements that act as sources of current.
The default value of 0.5 um corresponds to 1 um diameter dendrites.
"""
_validate_type(name, str, 'name')
if name in self.rec_arrays.keys():
raise ValueError(f'{name} already exists, use another name!')
# let ExtracellularArray perform all remaining argument checks
self.rec_arrays.update({
name: ExtracellularArray(electrode_pos,
conductivity=conductivity,
method=method,
min_distance=min_distance)})
[docs] def update_weights(self, e_e=None, e_i=None,
i_e=None, i_i=None, copy=False):
"""Update synaptic weights of the network.
Parameters
----------
e_e : float
Synaptic gain of excitatory to excitatory connections
(default None)
e_i : float
Synaptic gain of excitatory to inhibitory connections
(default None)
i_e : float
Synaptic gain of inhibitory to excitatory connections
(default None)
i_i : float
Synaptic gain of inhibitory to inhibitory connections
(default None)
copy : bool
If True, returns a copy of the network. If False,
the network is updated in place with a return of None.
(default False)
Returns
-------
net : instance of Network
A copy of the instance with updated synaptic gains if copy=True.
Notes
-----
Synaptic gains must be non-negative. The synaptic gains will only be
updated if a float value is provided. If None is provided
(the default), the synapticgain will remain unchanged.
"""
_validate_type(copy, bool, 'copy')
net = self.copy() if copy else self
e_conns = pick_connection(self, receptor=['ampa', 'nmda'])
e_cells = np.concatenate([list(net.connectivity[
conn_idx]['src_gids']) for conn_idx in e_conns]).tolist()
i_conns = pick_connection(self, receptor=['gabaa', 'gabab'])
i_cells = np.concatenate([list(net.connectivity[
conn_idx]['src_gids']) for conn_idx in i_conns]).tolist()
conn_types = {
'e_e': (e_e, e_cells, e_cells),
'e_i': (e_i, e_cells, i_cells),
'i_e': (i_e, i_cells, e_cells),
'i_i': (i_i, i_cells, i_cells)
}
for conn_type, (gain, e_vals, i_vals) in conn_types.items():
if gain is None:
continue
_validate_type(gain, (int, float), conn_type, 'int or float')
if gain < 0.0:
raise ValueError("Synaptic gains must be non-negative."
f"Got {gain} for '{conn_type}'.")
conn_indices = pick_connection(net, src_gids=e_vals,
target_gids=i_vals)
for conn_idx in conn_indices:
net.connectivity[conn_idx]['nc_dict']['gain'] = gain
if copy:
return net
[docs] def plot_cells(self, ax=None, show=True):
"""Plot the cells using Network.pos_dict.
Parameters
----------
ax : instance of matplotlib Axes3D | None
An axis object from matplotlib. If None,
a new figure is created.
show : bool
If True, show the figure.
Returns
-------
fig : instance of matplotlib Figure
The matplotlib figure handle.
"""
return plot_cells(net=self, ax=ax, show=show)
def to_dict(self, write_output=False):
return network_to_dict(self, write_output=write_output)
[docs] @copy_doc(write_network_configuration)
def write_configuration(self, fname, overwrite=True):
write_network_configuration(self, fname, overwrite)
class _Connectivity(dict):
"""A class for containing the connectivity details of the network
Class instances are essentially dictionaries, with the keys described below
as 'attributes'.
Attributes
----------
src_type : str
Cell type of source gids.
target_type : str
Cell type of target gids.
gid_pairs : dict
dict indexed by src gids with the format:
{src_gid: [target_gids, ...], ...}
where each src_gid indexes a list of all its targets.
num_srcs : int
Number of unique source gids.
num_targets : int
Number of unique target gids.
src_gids : set of int
Set of unique source gids in connection.
target_gids : set of int
Set of unique target gids in connection.
loc : str
Location of synapse on target cell. Must be
'proximal', 'distal', or 'soma'. Note that inhibitory synapses
(receptor='gabaa' or 'gabab') of L2 pyramidal neurons are only
valid loc='soma'.
receptor : str
Synaptic receptor of connection. Must be one of:
'ampa', 'nmda', 'gabaa', or 'gabab'.
nc_dict : dict
Dictionary containing details of synaptic connection.
Elements include:
A_weight : float
Synaptic weight on target cell.
A_delay : float
Synaptic delay in ms.
lamtha : float
Space constant.
gain : float
Multiplicative factor for synaptic weight.
probability : float
Probability of connection between any src-target pair.
Defaults to 1.0 producing an all-to-all pattern.
Notes
-----
The len() of src_range or target_range will not match
num_srcs and num_targets for probability < 1.0.
"""
def __repr__(self):
entr = f"{self['src_type']} -> {self['target_type']}"
entr += f"\ncell counts: {self['num_srcs']} srcs, "
entr += f"{self['num_targets']} targets"
entr += f"\nconnection probability: {self['probability']} "
entr += f"\nloc: '{self['loc']}'; receptor: '{self['receptor']}'"
entr += f"\nweight: {self['nc_dict']['A_weight']}; "
entr += f"delay: {self['nc_dict']['A_delay']}; "
entr += f"lamtha: {self['nc_dict']['lamtha']}"
entr += "\n "
return entr
class _NetworkDrive(dict):
"""A class for containing the parameters of external drives
Class instances are essentially dictionaries, with keys described below
as 'attributes'. For example, drive['events'] contains the spike times of
exogeneous inputs.
Attributes
----------
name : str
Name of drive (must be unique)
location : str
Target location of synapses ('distal' or 'proximal').
type : str
Examples: 'evoked', 'gaussian', 'poisson', 'bursty'
events : list of lists
List of spike time lists. First index is of length n_trials. Second
index is over the 'artificial' cells associated with this drive.
n_drive_cells : int
The number of drive cells that contribute to this drive.
cell_specific : bool
Whether each cell has unique connection parameters (default: True)
or all cells have common connections to a global (single) drive.
event_seed : int
Optional initial seed for random number generator used for event times.
Each artificial drive cell has seed = event_seed + gid
conn_seed : int
Optional initial seed for random number generator.
Used to randomly remove connections when probability < 1.0.
target_types : set or list of str
Names of cell types targeted by this drive (must be subset of
net.cell_types.keys()).
dynamics : dict
Parameters describing how the temporal dynamics of spike trains in the
drive. The keys are specific to the type of drive ('evoked', 'bursty',
etc.). See the drive add-methods in Network for details.
"""
def __repr__(self):
entr = f"<External drive '{self['name']}'"
if 'type' in self.keys():
entr += f"\ndrive class: {self['type']}"
entr += f"\ntarget location: {self['location']}"
entr += f"\ntarget cell types: {self['target_types']}"
entr += f"\nnumber of drive cells: {self['n_drive_cells']}"
entr += f"\ncell-specific: {self['cell_specific']}"
entr += "\ndynamic parameters:"
for key, val in self['dynamics'].items():
entr += f"\n\t{key}: {val}"
if len(self['events']) > 0:
plurl = 's' if len(self['events']) > 1 else ''
entr += ("\nevent times instantiated for "
f"{len(self['events'])} trial{plurl}")
entr += '>'
return entr
def _add_cell_type_bias(network: Network, amplitude: Union[float, dict],
cell_type=None,
t_0=0, t_stop=None):
if network is None:
raise ValueError('The "network" parameter is required '
'but was not provided')
if amplitude is None:
raise ValueError('The "amplitude" parameter is required '
'but was not provided')
if cell_type is not None:
# Validate cell_type value
if cell_type not in network.cell_types:
raise ValueError(f'cell_type must be one of '
f'{list(network.cell_types.keys())}. '
f'Got {cell_type}')
if 'tonic' not in network.external_biases:
network.external_biases['tonic'] = dict()
if cell_type in network.external_biases['tonic']:
raise ValueError(f'Tonic bias already defined for {cell_type}')
cell_type_bias = {
'amplitude': amplitude,
't0': t_0,
'tstop': t_stop
}
network.external_biases['tonic'][cell_type] = cell_type_bias