API Documentation

Simulation (hnn_core):

L2Pyr([pos, override_params, gid])

Layer 2 pyramidal cell class.

L5Pyr([pos, override_params, gid])

Layer 5 Pyramidal class.

L2Basket(pos[, gid])

Class for layer 2 basket cells.

L5Basket(pos[, gid])

Class for layer 5 basket cells.

simulate_dipole(net[, n_trials, …])

Simulate a dipole given the experiment parameters.

Network(params[, add_drives_from_params, …])

The Network class.

CellResponse([spike_times, spike_gids, …])

The CellResponse class.

Dipole (hnn_core.dipole):

Dipole(times, data[, nave])

Dipole class.

simulate_dipole(net[, n_trials, …])

Simulate a dipole given the experiment parameters.

read_dipole(fname)

Read dipole values from a file and create a Dipole instance.

average_dipoles(dpls)

Compute dipole averages over a list of Dipole objects.

Params (hnn_core.params):

Params([params_input])

Params object.

read_params(params_fname)

Read param values from a file (.json or .param).

Visualization (hnn_core.viz):

plot_dipole(dpl[, tmin, tmax, ax, layer, …])

Simple layer-specific plot function.

plot_spikes_hist(cell_response[, ax, …])

Plot the histogram of spiking activity across trials.

plot_spikes_raster(cell_response[, ax, show])

Plot the aggregate spiking activity according to cell type.

plot_cells(net[, ax, show])

Plot the cells using Network.pos_dict.

plot_psd(dpl, *[, fmin, fmax, tmin, tmax, …])

Plot power spectral density (PSD) of dipole time course

plot_tfr_morlet(dpl, freqs, *[, n_cycles, …])

Plot Morlet time-frequency representation of dipole time course

Parallel backends (hnn_core.parallel_backends):

MPIBackend([n_procs, mpi_cmd])

The MPIBackend class.

JoblibBackend([n_jobs])

The JoblibBackend class.

Input and Output:

read_dipole(fname)

Read dipole values from a file and create a Dipole instance.

read_spikes(fname[, gid_ranges])

Read spiking activity from a collection of spike trial files.