.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_simulate_gamma.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_simulate_gamma.py: ========================== 03. Simulate gamma rhythms ========================== This example demonstrates how to simulate gamma rhythms generated by the "PING" mechanism using ``hnn-core`` [1]_, [2]_. Note that the parameter file used is different from other examples: the intrinsic connectivity of the network was tuned in [1]_ by adjusting the synaptic weights between excitatory (pyramidal) and inbitory (basket) cells until gamma rhythms could be observed. The network dynamics are driven by Poisson-distributed (noisy) spike trains to layer II/III and layer V pyramidal cell populations. .. GENERATED FROM PYTHON SOURCE LINES 14-23 .. code-block:: default # Authors: Mainak Jas # Sam Neymotin # Christopher Bailey # sphinx_gallery_thumbnail_number = 2 import os.path as op .. GENERATED FROM PYTHON SOURCE LINES 24-25 Let us import hnn_core .. GENERATED FROM PYTHON SOURCE LINES 25-31 .. code-block:: default import hnn_core from hnn_core import simulate_dipole, read_params, Network hnn_core_root = op.dirname(hnn_core.__file__) .. GENERATED FROM PYTHON SOURCE LINES 32-35 Read the parameter file and print the between-cell connectivity parameters. Note that these are different compared with the 'default' parameter set used in, e.g., :ref:`sphx_glr_auto_examples_plot_simulate_alpha.py`. .. GENERATED FROM PYTHON SOURCE LINES 35-39 .. code-block:: default params_fname = op.join(hnn_core_root, 'param', 'gamma_L5weak_L2weak.json') params = read_params(params_fname) print(params['gbar_L*']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none { "gbar_L2Basket_L2Basket": 0.01, "gbar_L2Basket_L2Pyr_gabaa": 0.007, "gbar_L2Basket_L2Pyr_gabab": 0.0, "gbar_L2Basket_L5Pyr": 0.0, "gbar_L2Pyr_L2Basket": 0.0012, "gbar_L2Pyr_L2Pyr_ampa": 0.0, "gbar_L2Pyr_L2Pyr_nmda": 0.0, "gbar_L2Pyr_L5Basket": 0.0, "gbar_L2Pyr_L5Pyr": 0.0, "gbar_L5Basket_L5Basket": 0.0075, "gbar_L5Basket_L5Pyr_gabaa": 0.08, "gbar_L5Basket_L5Pyr_gabab": 0.0, "gbar_L5Pyr_L5Basket": 0.00091, "gbar_L5Pyr_L5Pyr_ampa": 0.0, "gbar_L5Pyr_L5Pyr_nmda": 0.0 } .. GENERATED FROM PYTHON SOURCE LINES 40-43 We'll add a tonic Poisson-distributed excitation to pyramidal cells and simulate the dipole moment in a single trial (the default value used by ``simulate_dipole`` is ``n_trials=params['N_trials']``). .. GENERATED FROM PYTHON SOURCE LINES 43-55 .. code-block:: default net = Network(params) weights_ampa = {'L2_pyramidal': 0.0008, 'L5_pyramidal': 0.0075} synaptic_delays = {'L2_pyramidal': 0.1, 'L5_pyramidal': 1.0} rate_constant = {'L2_pyramidal': 140.0, 'L5_pyramidal': 40.0} net.add_poisson_drive( 'poisson', rate_constant=rate_constant, weights_ampa=weights_ampa, location='proximal', synaptic_delays=synaptic_delays, seedcore=1079) dpls = simulate_dipole(net) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... Simulation time: 170.0 ms... Simulation time: 180.0 ms... Simulation time: 190.0 ms... Simulation time: 200.0 ms... Simulation time: 210.0 ms... Simulation time: 220.0 ms... Simulation time: 230.0 ms... Simulation time: 240.0 ms... .. GENERATED FROM PYTHON SOURCE LINES 56-60 Take a look at how different cell types respond to the exogenous drive. Note the periodic firing pattern of all cell types. While the basket cells fire relatively synchronously, the pyramidal cell populations display a more varied pattern, in which only a fraction of cells reach firing threshold. .. GENERATED FROM PYTHON SOURCE LINES 60-62 .. code-block:: default net.cell_response.plot_spikes_raster() .. image:: /auto_examples/images/sphx_glr_plot_simulate_gamma_001.png :alt: plot simulate gamma :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 63-67 To confirm that the periodicity observed in the firing patterns correspond to a population oscillation in the gamma-range, we can plot the time-frequency representation together with the signal. Note that the network requires some time to reach steady state. Hence, we omit the first 50 ms in our analysis. .. GENERATED FROM PYTHON SOURCE LINES 67-84 .. code-block:: default tmin = 50 trial_idx = 0 # pick first trial # plot dipole time course and time-frequency representation in same figure import numpy as np import matplotlib.pyplot as plt fig, axes = plt.subplots(2, 1, sharex=True, figsize=(6, 6), constrained_layout=True) dpls[trial_idx].plot(tmin=tmin, ax=axes[0], show=False) # Create an fixed-step tiling of frequencies from 20 to 100 Hz in steps of 1 Hz freqs = np.arange(20., 100., 1.) dpls[trial_idx].plot_tfr_morlet(freqs, n_cycles=7, tmin=tmin, ax=axes[1]) .. image:: /auto_examples/images/sphx_glr_plot_simulate_gamma_002.png :alt: Aggregate (L2 + L5) :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 85-90 As a final exercise, let us try to re-run the simulation with a tonic bias applied to the L5 Pyramidal cells. Notice that the oscillation waveform is more regular, with less noise due to the fact that the tonic depolarization dominates over the influence of the Poisson drive. By default, a tonic bias is applied to the entire duration of the simulation. .. GENERATED FROM PYTHON SOURCE LINES 90-95 .. code-block:: default net.add_tonic_bias(cell_type='L5_pyramidal', amplitude=6.) dpls = simulate_dipole(net, n_trials=1) dpls[trial_idx].plot() .. image:: /auto_examples/images/sphx_glr_plot_simulate_gamma_003.png :alt: Aggregate (L2 + L5) :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... Simulation time: 170.0 ms... Simulation time: 180.0 ms... Simulation time: 190.0 ms... Simulation time: 200.0 ms... Simulation time: 210.0 ms... Simulation time: 220.0 ms... Simulation time: 230.0 ms... Simulation time: 240.0 ms...
.. GENERATED FROM PYTHON SOURCE LINES 96-103 Notice that the Layer 5 pyramidal neurons now fire nearly synchronously, leading to a synchronous activation of the inhibitory basket neurons, resulting in a low-latency IPSP back onto the pyramidal cells. The duration of the IPSP is ~20 ms, after which the combined effect of the tonic bias and Poisson drive is to bring the pyramidal cells back to firing threshold, creating a ~50 Hz PING rhythm. This type of synchronous rhythm is sometimes referred to as “strong” PING. .. GENERATED FROM PYTHON SOURCE LINES 103-105 .. code-block:: default net.cell_response.plot_spikes_raster() .. image:: /auto_examples/images/sphx_glr_plot_simulate_gamma_004.png :alt: plot simulate gamma :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 106-108 Although the simulated dipole signal demonstrates clear periodicity, its frequency is lower compared with the "weak" PING simulation above. .. GENERATED FROM PYTHON SOURCE LINES 108-111 .. code-block:: default from hnn_core.viz import plot_psd plot_psd(dpls[trial_idx], fmin=20., fmax=100., tmin=tmin) .. image:: /auto_examples/images/sphx_glr_plot_simulate_gamma_005.png :alt: plot simulate gamma :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 112-120 References ---------- .. [1] Lee, S. & Jones, S. R. Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Frontiers in human neuroscience (2013) .. [2] https://jonescompneurolab.github.io/hnn-tutorials/gamma/gamma .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 4.788 seconds) .. _sphx_glr_download_auto_examples_plot_simulate_gamma.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/jonescompneurolab/hnn-core/gh-pages?filepath=v0.1/notebooks/auto_examples/plot_simulate_gamma.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_simulate_gamma.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_simulate_gamma.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_