.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_simulate_evoked.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_simulate_evoked.py: ===================================== 01. Simulate dipole for evoked inputs ===================================== This example demonstrates how to simulate a dipole for evoked-like waveforms using HNN-core. .. GENERATED FROM PYTHON SOURCE LINES 10-21 .. code-block:: default # Authors: Mainak Jas # Sam Neymotin # Blake Caldwell # Christopher Bailey # sphinx_gallery_thumbnail_number = 2 import os.path as op import tempfile .. GENERATED FROM PYTHON SOURCE LINES 22-23 Let us import hnn_core .. GENERATED FROM PYTHON SOURCE LINES 23-30 .. code-block:: default import hnn_core from hnn_core import simulate_dipole, read_params, Network, read_spikes from hnn_core.viz import plot_dipole hnn_core_root = op.dirname(hnn_core.__file__) .. GENERATED FROM PYTHON SOURCE LINES 31-32 Then we read the parameters file .. GENERATED FROM PYTHON SOURCE LINES 32-36 .. code-block:: default params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) print(params) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none { "L2Basket_Gauss_A_weight": 0.0, "L2Basket_Gauss_mu": 2000.0, "L2Basket_Gauss_sigma": 3.6, "L2Basket_Pois_A_weight_ampa": 0.0, "L2Basket_Pois_A_weight_nmda": 0.0, "L2Basket_Pois_lamtha": 0.0, "L2Pyr_Gauss_A_weight": 0.0, "L2Pyr_Gauss_mu": 2000.0, "L2Pyr_Gauss_sigma": 3.6, "L2Pyr_Pois_A_weight_ampa": 0.0, "L2Pyr_Pois_A_weight_nmda": 0.0, "L2Pyr_Pois_lamtha": 0.0, "L2Pyr_ampa_e": 0.0, "L2Pyr_ampa_tau1": 0.5, "L2Pyr_ampa_tau2": 5.0, "L2Pyr_apical1_L": 306.0, "L2Pyr_apical1_diam": 4.08, "L2Pyr_apicaloblique_L": 340.0, "L2Pyr_apicaloblique_diam": 3.91, "L2Pyr_apicaltrunk_L": 59.5, "L2Pyr_apicaltrunk_diam": 4.25, "L2Pyr_apicaltuft_L": 238.0, "L2Pyr_apicaltuft_diam": 3.4, "L2Pyr_basal1_L": 85.0, "L2Pyr_basal1_diam": 4.25, "L2Pyr_basal2_L": 255.0, "L2Pyr_basal2_diam": 2.72, "L2Pyr_basal3_L": 255.0, "L2Pyr_basal3_diam": 2.72, "L2Pyr_dend_Ra": 200.0, "L2Pyr_dend_cm": 0.6195, "L2Pyr_dend_el_hh2": -65.0, "L2Pyr_dend_gbar_km": 250.0, "L2Pyr_dend_gkbar_hh2": 0.01, "L2Pyr_dend_gl_hh2": 4.26e-05, "L2Pyr_dend_gnabar_hh2": 0.15, "L2Pyr_gabaa_e": -80.0, "L2Pyr_gabaa_tau1": 0.5, "L2Pyr_gabaa_tau2": 5.0, "L2Pyr_gabab_e": -80.0, "L2Pyr_gabab_tau1": 1.0, "L2Pyr_gabab_tau2": 20.0, "L2Pyr_nmda_e": 0.0, "L2Pyr_nmda_tau1": 1.0, "L2Pyr_nmda_tau2": 20.0, "L2Pyr_soma_L": 22.1, "L2Pyr_soma_Ra": 200.0, "L2Pyr_soma_cm": 0.6195, "L2Pyr_soma_diam": 23.4, "L2Pyr_soma_el_hh2": -65.0, "L2Pyr_soma_gbar_km": 250.0, "L2Pyr_soma_gkbar_hh2": 0.01, "L2Pyr_soma_gl_hh2": 4.26e-05, "L2Pyr_soma_gnabar_hh2": 0.18, "L5Basket_Gauss_A_weight": 0.0, "L5Basket_Gauss_mu": 2000.0, "L5Basket_Gauss_sigma": 2.0, "L5Basket_Pois_A_weight_ampa": 0.0, "L5Basket_Pois_A_weight_nmda": 0.0, "L5Basket_Pois_lamtha": 0.0, "L5Pyr_Gauss_A_weight": 0.0, "L5Pyr_Gauss_mu": 2000.0, "L5Pyr_Gauss_sigma": 4.8, "L5Pyr_Pois_A_weight_ampa": 0.0, "L5Pyr_Pois_A_weight_nmda": 0.0, "L5Pyr_Pois_lamtha": 0.0, "L5Pyr_ampa_e": 0.0, "L5Pyr_ampa_tau1": 0.5, "L5Pyr_ampa_tau2": 5.0, "L5Pyr_apical1_L": 680.0, "L5Pyr_apical1_diam": 7.48, "L5Pyr_apical2_L": 680.0, "L5Pyr_apical2_diam": 4.93, "L5Pyr_apicaloblique_L": 255.0, "L5Pyr_apicaloblique_diam": 5.1, "L5Pyr_apicaltrunk_L": 102.0, "L5Pyr_apicaltrunk_diam": 10.2, "L5Pyr_apicaltuft_L": 425.0, "L5Pyr_apicaltuft_diam": 3.4, "L5Pyr_basal1_L": 85.0, "L5Pyr_basal1_diam": 6.8, "L5Pyr_basal2_L": 255.0, "L5Pyr_basal2_diam": 8.5, "L5Pyr_basal3_L": 255.0, "L5Pyr_basal3_diam": 8.5, "L5Pyr_dend_Ra": 200.0, "L5Pyr_dend_cm": 0.85, "L5Pyr_dend_el_hh2": -71.0, "L5Pyr_dend_gbar_ar": 1e-06, "L5Pyr_dend_gbar_ca": 60.0, "L5Pyr_dend_gbar_cat": 0.0002, "L5Pyr_dend_gbar_kca": 0.0002, "L5Pyr_dend_gbar_km": 200.0, "L5Pyr_dend_gkbar_hh2": 0.01, "L5Pyr_dend_gl_hh2": 4.26e-05, "L5Pyr_dend_gnabar_hh2": 0.14, "L5Pyr_dend_taur_cad": 20.0, "L5Pyr_gabaa_e": -80.0, "L5Pyr_gabaa_tau1": 0.5, "L5Pyr_gabaa_tau2": 5.0, "L5Pyr_gabab_e": -80.0, "L5Pyr_gabab_tau1": 1.0, "L5Pyr_gabab_tau2": 20.0, "L5Pyr_nmda_e": 0.0, "L5Pyr_nmda_tau1": 1.0, "L5Pyr_nmda_tau2": 20.0, "L5Pyr_soma_L": 39.0, "L5Pyr_soma_Ra": 200.0, "L5Pyr_soma_cm": 0.85, "L5Pyr_soma_diam": 28.9, "L5Pyr_soma_el_hh2": -65.0, "L5Pyr_soma_gbar_ar": 1e-06, "L5Pyr_soma_gbar_ca": 60.0, "L5Pyr_soma_gbar_cat": 0.0002, "L5Pyr_soma_gbar_kca": 0.0002, "L5Pyr_soma_gbar_km": 200.0, "L5Pyr_soma_gkbar_hh2": 0.01, "L5Pyr_soma_gl_hh2": 4.26e-05, "L5Pyr_soma_gnabar_hh2": 0.16, "L5Pyr_soma_taur_cad": 20.0, "N_pyr_x": 10, "N_pyr_y": 10, "N_trials": 1, "T_pois": -1, "celsius": 37.0, "dipole_scalefctr": 3000, "dipole_smooth_win": 30, "distribution_dist": "normal", "distribution_prox": "normal", "dt": 0.025, "dt_evprox0_evdist": -1, "dt_evprox0_evprox1": -1, "events_per_cycle_dist": 2, "events_per_cycle_prox": 2, "f_input_dist": 10.0, "f_input_prox": 10.0, "f_max_spec": 100, "f_stdev_dist": 20.0, "f_stdev_prox": 20.0, "gbar_L2Basket_L2Basket": 0.02, "gbar_L2Basket_L2Pyr_gabaa": 0.05, "gbar_L2Basket_L2Pyr_gabab": 0.05, "gbar_L2Basket_L5Pyr": 0.001, "gbar_L2Pyr_L2Basket": 0.0005, "gbar_L2Pyr_L2Pyr_ampa": 0.0005, "gbar_L2Pyr_L2Pyr_nmda": 0.0005, "gbar_L2Pyr_L5Basket": 0.00025, "gbar_L2Pyr_L5Pyr": 0.00025, "gbar_L5Basket_L5Basket": 0.02, "gbar_L5Basket_L5Pyr_gabaa": 0.025, "gbar_L5Basket_L5Pyr_gabab": 0.025, "gbar_L5Pyr_L5Basket": 0.0005, "gbar_L5Pyr_L5Pyr_ampa": 0.0005, "gbar_L5Pyr_L5Pyr_nmda": 0.0005, "gbar_evdist_1_L2Basket_ampa": 0.006562, "gbar_evdist_1_L2Basket_nmda": 0.019482, "gbar_evdist_1_L2Pyr_ampa": 7e-06, "gbar_evdist_1_L2Pyr_nmda": 0.004317, "gbar_evdist_1_L5Pyr_ampa": 0.1423, "gbar_evdist_1_L5Pyr_nmda": 0.080074, "gbar_evprox_1_L2Basket_ampa": 0.08831, "gbar_evprox_1_L2Basket_nmda": 0.0, "gbar_evprox_1_L2Pyr_ampa": 0.01525, "gbar_evprox_1_L2Pyr_nmda": 0.0, "gbar_evprox_1_L5Basket_ampa": 0.19934, "gbar_evprox_1_L5Basket_nmda": 0.0, "gbar_evprox_1_L5Pyr_ampa": 0.00865, "gbar_evprox_1_L5Pyr_nmda": 0.0, "gbar_evprox_2_L2Basket_ampa": 3e-06, "gbar_evprox_2_L2Basket_nmda": 0.0, "gbar_evprox_2_L2Pyr_ampa": 1.43884, "gbar_evprox_2_L2Pyr_nmda": 0.0, "gbar_evprox_2_L5Basket_ampa": 0.008958, "gbar_evprox_2_L5Basket_nmda": 0.0, "gbar_evprox_2_L5Pyr_ampa": 0.684013, "gbar_evprox_2_L5Pyr_nmda": 0.0, "inc_evinput": 0.0, "input_dist_A_delay_L2": 5.0, "input_dist_A_delay_L5": 5.0, "input_dist_A_weight_L2Basket_ampa": 0.0, "input_dist_A_weight_L2Basket_nmda": 0.0, "input_dist_A_weight_L2Pyr_ampa": 0.0, "input_dist_A_weight_L2Pyr_nmda": 0.0, "input_dist_A_weight_L5Pyr_ampa": 0.0, "input_dist_A_weight_L5Pyr_nmda": 0.0, "input_prox_A_delay_L2": 0.1, "input_prox_A_delay_L5": 1.0, "input_prox_A_weight_L2Basket_ampa": 0.0, "input_prox_A_weight_L2Basket_nmda": 0.0, "input_prox_A_weight_L2Pyr_ampa": 0.0, "input_prox_A_weight_L2Pyr_nmda": 0.0, "input_prox_A_weight_L5Basket_ampa": 0.0, "input_prox_A_weight_L5Basket_nmda": 0.0, "input_prox_A_weight_L5Pyr_ampa": 0.0, "input_prox_A_weight_L5Pyr_nmda": 0.0, "numspikes_evdist_1": 1, "numspikes_evprox_1": 1, "numspikes_evprox_2": 1, "prng_seedcore_evdist_1": 2, "prng_seedcore_evprox_1": 2, "prng_seedcore_evprox_2": 2, "prng_seedcore_extgauss": 2, "prng_seedcore_extpois": 2, "prng_seedcore_input_dist": 2, "prng_seedcore_input_prox": 2, "record_isoma": 0, "record_vsoma": 0, "repeats_dist": 10, "repeats_prox": 10, "save_dpl": 0, "save_figs": 0, "save_spec_data": 0, "sigma_t_evdist_1": 3.85, "sigma_t_evprox_1": 2.47, "sigma_t_evprox_2": 8.33, "sim_prefix": "default", "spec_cmap": "jet", "sync_evinput": false, "t0_input_dist": 1000, "t0_input_prox": 1000.0, "t0_input_stdev_dist": 0.0, "t0_input_stdev_prox": 0.0, "t0_pois": 0.0, "t_evdist_1": 63.53, "t_evprox_1": 26.61, "t_evprox_2": 137.12, "threshold": 0.0, "tstop": 170, "tstop_input_dist": 1001, "tstop_input_prox": 1001 } .. GENERATED FROM PYTHON SOURCE LINES 37-40 This is a lot of parameters! We can also filter the parameters using unix-style wildcard characters. Most of the parameters relate to within-network connections and the cell geometry. .. GENERATED FROM PYTHON SOURCE LINES 40-42 .. code-block:: default print(params['L2Pyr_soma*']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none { "L2Pyr_soma_L": 22.1, "L2Pyr_soma_Ra": 200.0, "L2Pyr_soma_cm": 0.6195, "L2Pyr_soma_diam": 23.4, "L2Pyr_soma_el_hh2": -65.0, "L2Pyr_soma_gbar_km": 250.0, "L2Pyr_soma_gkbar_hh2": 0.01, "L2Pyr_soma_gl_hh2": 4.26e-05, "L2Pyr_soma_gnabar_hh2": 0.18 } .. GENERATED FROM PYTHON SOURCE LINES 43-45 Let us first create our network from the params file and visualize the cells inside it. .. GENERATED FROM PYTHON SOURCE LINES 45-48 .. code-block:: default net = Network(params) net.plot_cells() .. image:: /auto_examples/images/sphx_glr_plot_simulate_evoked_001.png :alt: plot simulate evoked :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 49-57 The network of cells is now defined, to which we add external drives as required. Weights are prescribed separately for AMPA and NMDA receptors (receptors that are not used can be omitted or set to zero). The possible drive types include the following (click on the links for documentation): - :meth:`hnn_core.Network.add_evoked_drive` - :meth:`hnn_core.Network.add_poisson_drive` - :meth:`hnn_core.Network.add_bursty_drive` .. GENERATED FROM PYTHON SOURCE LINES 59-60 First, we add a distal evoked drive .. GENERATED FROM PYTHON SOURCE LINES 60-71 .. code-block:: default weights_ampa_d1 = {'L2_basket': 0.006562, 'L2_pyramidal': .000007, 'L5_pyramidal': 0.142300} weights_nmda_d1 = {'L2_basket': 0.019482, 'L2_pyramidal': 0.004317, 'L5_pyramidal': 0.080074} synaptic_delays_d1 = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_pyramidal': 0.1} net.add_evoked_drive( 'evdist1', mu=63.53, sigma=3.85, numspikes=1, weights_ampa=weights_ampa_d1, weights_nmda=weights_nmda_d1, location='distal', synaptic_delays=synaptic_delays_d1, seedcore=4) .. GENERATED FROM PYTHON SOURCE LINES 72-73 Then, we add two proximal drives .. GENERATED FROM PYTHON SOURCE LINES 73-92 .. code-block:: default weights_ampa_p1 = {'L2_basket': 0.08831, 'L2_pyramidal': 0.01525, 'L5_basket': 0.19934, 'L5_pyramidal': 0.00865} synaptic_delays_prox = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_basket': 1., 'L5_pyramidal': 1.} # all NMDA weights are zero; pass None explicitly net.add_evoked_drive( 'evprox1', mu=26.61, sigma=2.47, numspikes=1, weights_ampa=weights_ampa_p1, weights_nmda=None, location='proximal', synaptic_delays=synaptic_delays_prox, seedcore=4) # Second proximal evoked drive. NB: only AMPA weights differ from first weights_ampa_p2 = {'L2_basket': 0.000003, 'L2_pyramidal': 1.438840, 'L5_basket': 0.008958, 'L5_pyramidal': 0.684013} # all NMDA weights are zero; omit weights_nmda (defaults to None) net.add_evoked_drive( 'evprox2', mu=137.12, sigma=8.33, numspikes=1, weights_ampa=weights_ampa_p2, location='proximal', synaptic_delays=synaptic_delays_prox, seedcore=4) .. GENERATED FROM PYTHON SOURCE LINES 93-98 Now let's simulate the dipole, running 2 trials with the :class:`~hnn_core.parallel_backends.Joblib` backend. To run them in parallel we could set ``n_jobs`` to equal the number of trials. The ``Joblib`` backend allows running the simulations in parallel across trials. .. GENERATED FROM PYTHON SOURCE LINES 98-103 .. code-block:: default from hnn_core import JoblibBackend with JoblibBackend(n_jobs=1): dpls = simulate_dipole(net, n_trials=2, postproc=True) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Loading custom mechanism files from /home/circleci/miniconda/envs/testenv/lib/python3.6/site-packages/hnn_core-0.1-py3.6.egg/hnn_core/mod/x86_64/.libs/libnrnmech.so Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... Building the NEURON model [Done] running trial 2 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... .. GENERATED FROM PYTHON SOURCE LINES 104-106 and then plot the amplitudes of the simulated aggregate dipole moments over time .. GENERATED FROM PYTHON SOURCE LINES 106-113 .. code-block:: default import matplotlib.pyplot as plt fig, axes = plt.subplots(2, 1, sharex=True, figsize=(6, 6), constrained_layout=True) plot_dipole(dpls, ax=axes[0], layer='agg', show=False) net.cell_response.plot_spikes_hist(ax=axes[1], spike_types=['evprox', 'evdist']) .. image:: /auto_examples/images/sphx_glr_plot_simulate_evoked_002.png :alt: Aggregate (L2 + L5) :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 114-120 Now, let us try to make the exogenous driving inputs to the cells synchronous and see what happens. This is achieved by setting the parameter ``sync_within_trial`` to ``True``. Using the ``copy``-method, we can create a clone of the network defined above, and then modify the drive dynamics for each drive. Making a copy removes any existing outputs from the network such as spiking information and voltages at the soma. .. GENERATED FROM PYTHON SOURCE LINES 120-126 .. code-block:: default net_sync = net.copy() net_sync.external_drives['evdist1']['dynamics']['sync_within_trial'] = True net_sync.external_drives['evprox1']['dynamics']['sync_within_trial'] = True net_sync.external_drives['evprox2']['dynamics']['sync_within_trial'] = True .. GENERATED FROM PYTHON SOURCE LINES 127-128 You may interrogate current values defining the spike event time dynamics by .. GENERATED FROM PYTHON SOURCE LINES 128-130 .. code-block:: default print(net_sync.external_drives['evdist1']['dynamics']) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none {'mu': 63.53, 'sigma': 3.85, 'numspikes': 1, 'sync_within_trial': True} .. GENERATED FROM PYTHON SOURCE LINES 131-132 Finally, let's simulate this network. .. GENERATED FROM PYTHON SOURCE LINES 132-137 .. code-block:: default dpls_sync = simulate_dipole(net_sync, n_trials=1) trial_idx = 0 dpls_sync[trial_idx].plot() net_sync.cell_response.plot_spikes_hist() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/images/sphx_glr_plot_simulate_evoked_003.png :alt: Aggregate (L2 + L5) :class: sphx-glr-multi-img * .. image:: /auto_examples/images/sphx_glr_plot_simulate_evoked_004.png :alt: plot simulate evoked :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms...
.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 1.084 seconds) .. _sphx_glr_download_auto_examples_plot_simulate_evoked.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/jonescompneurolab/hnn-core/gh-pages?filepath=v0.1/notebooks/auto_examples/plot_simulate_evoked.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_simulate_evoked.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_simulate_evoked.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_