.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_simulate_alpha.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_simulate_alpha.py: ================================= 02. Simulate alpha and beta waves ================================= This example demonstrates how to simulate alpha and beta waves using HNN-core. Alpha activity can be produced with 10 Hz excitatory drive to the proximal or distal dendrites of pyramidal neurons. Providing proximal and distal drive simultaneously results in higher frequency beta activity [1]_, [2]_. .. GENERATED FROM PYTHON SOURCE LINES 12-20 .. code-block:: default # Authors: Mainak Jas # Sam Neymotin # Nick Tolley # Christopher Bailey import os.path as op .. GENERATED FROM PYTHON SOURCE LINES 21-22 Let us import hnn_core .. GENERATED FROM PYTHON SOURCE LINES 22-26 .. code-block:: default import hnn_core from hnn_core import simulate_dipole, read_params, Network .. GENERATED FROM PYTHON SOURCE LINES 27-28 Then we setup the directories and read the default parameters file .. GENERATED FROM PYTHON SOURCE LINES 28-32 .. code-block:: default hnn_core_root = op.dirname(hnn_core.__file__) params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) .. GENERATED FROM PYTHON SOURCE LINES 33-40 Now let's simulate the dipole and plot it. To excite the network, we add a ~10 Hz "bursty" drive starting at 50 ms and continuing to the end of the simulation. Each burst consists of a pair (2) of spikes, spaced 10 ms apart. The occurrence of each burst is jittered by a random, normally distributed amount (20 ms standard deviation). We repeat the burst train 10 times, each time with unique randomization. The drive is only connected to the proximal (dendritic) AMPA synapses on L2/3 and L5 pyramidal neurons. .. GENERATED FROM PYTHON SOURCE LINES 40-60 .. code-block:: default params['tstop'] = 310 net = Network(params) location = 'proximal' burst_std = 20 weights_ampa_p = {'L2_pyramidal': 5.4e-5, 'L5_pyramidal': 5.4e-5} syn_delays_p = {'L2_pyramidal': 0.1, 'L5_pyramidal': 1.} net.add_bursty_drive( 'alpha_prox', tstart=50., burst_rate=10, burst_std=burst_std, numspikes=2, spike_isi=10, repeats=10, location=location, weights_ampa=weights_ampa_p, synaptic_delays=syn_delays_p, seedcore=14) # simulate the dipole, but do not automatically scale or smooth the result dpl = simulate_dipole(net, n_trials=1, postproc=False) trial_idx = 0 # single trial simulated, choose the first index # to emulate a larger patch of cortex, we can apply a simple scaling factor dpl[trial_idx].scale(3000) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... Simulation time: 170.0 ms... Simulation time: 180.0 ms... Simulation time: 190.0 ms... Simulation time: 200.0 ms... Simulation time: 210.0 ms... Simulation time: 220.0 ms... Simulation time: 230.0 ms... Simulation time: 240.0 ms... Simulation time: 250.0 ms... Simulation time: 260.0 ms... Simulation time: 270.0 ms... Simulation time: 280.0 ms... Simulation time: 290.0 ms... Simulation time: 300.0 ms... .. GENERATED FROM PYTHON SOURCE LINES 61-67 Prior to plotting, we can choose to smooth the dipole waveform (note that the :meth:`~hnn_core.dipole.smooth`-method operates in-place, *i.e.*, it alters the data inside the ``Dipole`` object). Smoothing approximates the effect of signal summation from a larger number and greater volume of neurons than are included in our biophysical model. We can confirm that what we simulate is indeed 10 Hz activity by plotting the power spectral density (PSD). .. GENERATED FROM PYTHON SOURCE LINES 67-87 .. code-block:: default import matplotlib.pyplot as plt from hnn_core.viz import plot_dipole, plot_psd fig, axes = plt.subplots(2, 1, constrained_layout=True) tmin, tmax = 10, 300 # exclude the initial burn-in period from the plots # We'll make a copy of the dipole before smoothing in order to compare window_len = 20 # convolve with a 20 ms-long Hamming window dpl_smooth = dpl[trial_idx].copy().smooth(window_len) # Overlay the traces for comparison. The function plot_dipole can plot a list # of dipoles at once dpl_list = [dpl[trial_idx], dpl_smooth] plot_dipole(dpl_list, tmin=tmin, tmax=tmax, ax=axes[0], show=False) axes[0].set_xlim((1, 399)) axes[0].legend(['orig', 'smooth']) plot_psd(dpl[trial_idx], fmin=1., fmax=1e3, tmin=tmin, ax=axes[1], show=False) axes[1].set_xscale('log') plt.tight_layout() .. image:: /auto_examples/images/sphx_glr_plot_simulate_alpha_001.png :alt: Aggregate (L2 + L5) :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/circleci/project/examples/plot_simulate_alpha.py:86: UserWarning: This figure was using constrained_layout==True, but that is incompatible with subplots_adjust and or tight_layout: setting constrained_layout==False. plt.tight_layout() .. GENERATED FROM PYTHON SOURCE LINES 88-93 The next step is to add a simultaneous 10 Hz distal drive with a lower within-burst spread of spike times (``burst_std``) compared with the proximal one. The different arrival times of spikes at opposite ends of the pyramidal cells will tend to produce bursts of 15-30 Hz power known as beta frequency events. .. GENERATED FROM PYTHON SOURCE LINES 93-104 .. code-block:: default location = 'distal' burst_std = 15 weights_ampa_d = {'L2_pyramidal': 5.4e-5, 'L5_pyramidal': 5.4e-5} syn_delays_d = {'L2_pyramidal': 5., 'L5_pyramidal': 5.} net.add_bursty_drive( 'alpha_dist', tstart=50., burst_rate=10, burst_std=burst_std, numspikes=2, spike_isi=10, repeats=10, location=location, weights_ampa=weights_ampa_d, synaptic_delays=syn_delays_d, seedcore=16) dpl = simulate_dipole(net, n_trials=1, postproc=False) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... Simulation time: 170.0 ms... Simulation time: 180.0 ms... Simulation time: 190.0 ms... Simulation time: 200.0 ms... Simulation time: 210.0 ms... Simulation time: 220.0 ms... Simulation time: 230.0 ms... Simulation time: 240.0 ms... Simulation time: 250.0 ms... Simulation time: 260.0 ms... Simulation time: 270.0 ms... Simulation time: 280.0 ms... Simulation time: 290.0 ms... Simulation time: 300.0 ms... .. GENERATED FROM PYTHON SOURCE LINES 105-110 We can verify that beta frequency activity was produced by inspecting the PSD of the most recent simulation. The dominant power in the signal is shifted from alpha (~10 Hz) to beta (15-25 Hz) frequency range. All plotting and smoothing parameters are as above, but here no scaling is applied, leading to smaller absolute values in the plots. .. GENERATED FROM PYTHON SOURCE LINES 110-122 .. code-block:: default fig, axes = plt.subplots(2, 1, constrained_layout=True) # We'll again make a copy of the dipole before smoothing smooth_dpl = dpl[trial_idx].copy().smooth(window_len) # Note that using the ``plot_*``-functions are available as ``Dipole``-methods: dpl[trial_idx].plot(tmin=tmin, tmax=tmax, ax=axes[0], show=False) smooth_dpl.plot(tmin=tmin, tmax=tmax, ax=axes[0], show=False) dpl[trial_idx].plot_psd(fmin=0., fmax=40., tmin=tmin, ax=axes[1]) plt.tight_layout() .. image:: /auto_examples/images/sphx_glr_plot_simulate_alpha_002.png :alt: Aggregate (L2 + L5) :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none /home/circleci/project/examples/plot_simulate_alpha.py:120: UserWarning: This figure was using constrained_layout==True, but that is incompatible with subplots_adjust and or tight_layout: setting constrained_layout==False. plt.tight_layout() .. GENERATED FROM PYTHON SOURCE LINES 123-130 References ---------- .. [1] Jones, S. R. et al. Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. J. Neurophysiol. 102, 3554–3572 (2009). .. [2] https://jonescompneurolab.github.io/hnn-tutorials/alpha_and_beta/alpha_and_beta .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 2 minutes 30.854 seconds) .. _sphx_glr_download_auto_examples_plot_simulate_alpha.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/jonescompneurolab/hnn-core/gh-pages?filepath=v0.1/notebooks/auto_examples/plot_simulate_alpha.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_simulate_alpha.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_simulate_alpha.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_