.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_firing_pattern.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_firing_pattern.py: ======================= 04. Plot firing pattern ======================= This example demonstrates how to inspect the firing pattern of cells in the HNN model. .. GENERATED FROM PYTHON SOURCE LINES 9-16 .. code-block:: default # Authors: Mainak Jas # Nick Tolley import os.path as op import tempfile .. GENERATED FROM PYTHON SOURCE LINES 17-18 Let us import ``hnn_core``. .. GENERATED FROM PYTHON SOURCE LINES 18-24 .. code-block:: default import hnn_core from hnn_core import read_params, read_spikes, Network, simulate_dipole hnn_core_root = op.dirname(hnn_core.__file__) .. GENERATED FROM PYTHON SOURCE LINES 25-26 Then we read the parameters file .. GENERATED FROM PYTHON SOURCE LINES 26-29 .. code-block:: default params_fname = op.join(hnn_core_root, 'param', 'default.json') params = read_params(params_fname) .. GENERATED FROM PYTHON SOURCE LINES 30-32 Now let's build the network. We have used the same weights as in the :ref:`evoked example `. .. GENERATED FROM PYTHON SOURCE LINES 32-36 .. code-block:: default import matplotlib.pyplot as plt net = Network(params) .. GENERATED FROM PYTHON SOURCE LINES 37-42 ``net`` does not have any driving inputs and only defines the local network connectivity. Let us go ahead and first add a distal evoked drive. We need to define the AMPA and NMDA weights for the connections. An "evoked drive" defines inputs that are normally distributed with a certain mean and standard deviation. .. GENERATED FROM PYTHON SOURCE LINES 42-54 .. code-block:: default weights_ampa_d1 = {'L2_basket': 0.006562, 'L2_pyramidal': 7e-6, 'L5_pyramidal': 0.142300} weights_nmda_d1 = {'L2_basket': 0.019482, 'L2_pyramidal': 0.004317, 'L5_pyramidal': 0.080074} synaptic_delays_d1 = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_pyramidal': 0.1} net.add_evoked_drive( 'evdist1', mu=63.53, sigma=3.85, numspikes=1, weights_ampa=weights_ampa_d1, weights_nmda=weights_nmda_d1, location='distal', synaptic_delays=synaptic_delays_d1, seedcore=4) .. GENERATED FROM PYTHON SOURCE LINES 55-59 The reason it is called an "evoked drive" is it can be used to simulate waveforms resembling evoked responses. Here, we show how to do it with two proximal drives which drive current up the dendrite and one distal drive which drives current down the dendrite producing the negative deflection. .. GENERATED FROM PYTHON SOURCE LINES 59-70 .. code-block:: default weights_ampa_p1 = {'L2_basket': 0.08831, 'L2_pyramidal': 0.01525, 'L5_basket': 0.19934, 'L5_pyramidal': 0.00865} synaptic_delays_prox = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_basket': 1., 'L5_pyramidal': 1.} # all NMDA weights are zero; pass None explicitly net.add_evoked_drive( 'evprox1', mu=26.61, sigma=2.47, numspikes=1, weights_ampa=weights_ampa_p1, weights_nmda=None, location='proximal', synaptic_delays=synaptic_delays_prox, seedcore=4) .. GENERATED FROM PYTHON SOURCE LINES 71-74 Now we add the second proximal evoked drive and simulate the network dynamics with somatic voltage recordings enabled. Note: only AMPA weights differ from first. .. GENERATED FROM PYTHON SOURCE LINES 74-84 .. code-block:: default weights_ampa_p2 = {'L2_basket': 0.000003, 'L2_pyramidal': 1.438840, 'L5_basket': 0.008958, 'L5_pyramidal': 0.684013} # all NMDA weights are zero; omit weights_nmda (defaults to None) net.add_evoked_drive( 'evprox2', mu=137.12, sigma=8.33, numspikes=1, weights_ampa=weights_ampa_p2, location='proximal', synaptic_delays=synaptic_delays_prox, seedcore=4) dpls = simulate_dipole(net, record_vsoma=True) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none joblib will run over 1 jobs Building the NEURON model [Done] running trial 1 on 1 cores Simulation time: 0.03 ms... Simulation time: 10.0 ms... Simulation time: 20.0 ms... Simulation time: 30.0 ms... Simulation time: 40.0 ms... Simulation time: 50.0 ms... Simulation time: 60.0 ms... Simulation time: 70.0 ms... Simulation time: 80.0 ms... Simulation time: 90.0 ms... Simulation time: 100.0 ms... Simulation time: 110.0 ms... Simulation time: 120.0 ms... Simulation time: 130.0 ms... Simulation time: 140.0 ms... Simulation time: 150.0 ms... Simulation time: 160.0 ms... .. GENERATED FROM PYTHON SOURCE LINES 85-89 Here, we explain more details about the data structures and how they can be used to better interpret the data. The cell IDs (gids) uniquely define neurons in the network and are stored in the :class:`~hnn_core.Network` object as a dictionary .. GENERATED FROM PYTHON SOURCE LINES 89-92 .. code-block:: default gid_ranges = net.gid_ranges print(net.gid_ranges) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none {'L2_basket': range(0, 35), 'L2_pyramidal': range(35, 135), 'L5_basket': range(135, 170), 'L5_pyramidal': range(170, 270), 'evdist1': range(270, 540), 'evprox1': range(540, 810), 'evprox2': range(810, 1080)} .. GENERATED FROM PYTHON SOURCE LINES 93-96 Simulated voltage in the soma is stored in :class:`~hnn_core.CellResponse` as a dictionary. The CellResponse object stores data produced by individual cells including spikes, somatic voltages and currents. .. GENERATED FROM PYTHON SOURCE LINES 96-100 .. code-block:: default trial_idx = 0 vsoma = net.cell_response.vsoma[trial_idx] print(vsoma.keys()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none dict_keys([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269]) .. GENERATED FROM PYTHON SOURCE LINES 101-102 We can plot the firing pattern of individual cells by indexing with the gid .. GENERATED FROM PYTHON SOURCE LINES 102-110 .. code-block:: default gid = 170 plt.figure(figsize=(4, 4), constrained_layout=True) plt.plot(net.cell_response.times, vsoma[gid]) plt.title('%s (gid=%d)' % (net.gid_to_type(gid), gid)) plt.xlabel('Time (ms)') plt.ylabel('Voltage (mV)') plt.show() .. image:: /auto_examples/images/sphx_glr_plot_firing_pattern_001.png :alt: L5_pyramidal (gid=170) :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 111-115 Also, we can plot the spikes in the network and write them to text files. Note that we can use formatting syntax to specify the filename pattern with which each trial will be written ('spk_1.txt', 'spk_2.txt, ...). To read spikes back in, we can use wildcard expressions. .. GENERATED FROM PYTHON SOURCE LINES 115-121 .. code-block:: default net.cell_response.plot_spikes_raster() with tempfile.TemporaryDirectory() as tmp_dir_name: net.cell_response.write(op.join(tmp_dir_name, 'spk_%d.txt')) cell_response = read_spikes(op.join(tmp_dir_name, 'spk_*.txt')) cell_response.plot_spikes_raster() .. rst-class:: sphx-glr-horizontal * .. image:: /auto_examples/images/sphx_glr_plot_firing_pattern_002.png :alt: plot firing pattern :class: sphx-glr-multi-img * .. image:: /auto_examples/images/sphx_glr_plot_firing_pattern_003.png :alt: plot firing pattern :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 122-124 We can additionally calculate the mean spike rates for each cell class by specifying a time window with ``tstart`` and ``tstop``. .. GENERATED FROM PYTHON SOURCE LINES 124-135 .. code-block:: default all_rates = cell_response.mean_rates(tstart=0, tstop=170, gid_ranges=net.gid_ranges, mean_type='all') trial_rates = cell_response.mean_rates(tstart=0, tstop=170, gid_ranges=net.gid_ranges, mean_type='trial') print('Mean spike rates across trials:') print(all_rates) print('Mean spike rates for individual trials:') print(trial_rates) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Mean spike rates across trials: {'L5_pyramidal': 23.29411764705883, 'L5_basket': 14.285714285714285, 'L2_pyramidal': 6.705882352941176, 'L2_basket': 9.243697478991596} Mean spike rates for individual trials: {'L5_pyramidal': [23.29411764705883], 'L5_basket': [14.285714285714285], 'L2_pyramidal': [6.705882352941176], 'L2_basket': [9.243697478991596]} .. GENERATED FROM PYTHON SOURCE LINES 136-138 Finally, we can plot the soma voltage along with the spiking activity with raster plots and histograms for the pyramidal cells. .. GENERATED FROM PYTHON SOURCE LINES 138-150 .. code-block:: default fig, axes = plt.subplots(3, 1, figsize=(5, 7), sharex=True) for idx in range(10): # only 10 cells per cell-type gid = gid_ranges['L2_pyramidal'][idx] axes[0].plot(net.cell_response.times, vsoma[gid], color='g') gid = gid_ranges['L5_pyramidal'][idx] axes[0].plot(net.cell_response.times, vsoma[gid], color='r') net.cell_response.plot_spikes_raster(ax=axes[1]) net.cell_response.plot_spikes_hist(ax=axes[2], spike_types=['L5_pyramidal', 'L2_pyramidal']) .. image:: /auto_examples/images/sphx_glr_plot_firing_pattern_004.png :alt: plot firing pattern :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 43.284 seconds) .. _sphx_glr_download_auto_examples_plot_firing_pattern.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/jonescompneurolab/hnn-core/gh-pages?filepath=v0.1/notebooks/auto_examples/plot_firing_pattern.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_firing_pattern.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_firing_pattern.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_