.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/workflows/plot_simulate_somato.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_workflows_plot_simulate_somato.py: ================================================ 04. From MEG sensor-space data to HNN simulation ================================================ This example demonstrates how to calculate an inverse solution of the median nerve evoked response potential (ERP) in S1 from the MNE somatosensory dataset, and then simulate a biophysical model network that reproduces the observed dynamics. Note that we do not expound on how we came up with the sequence of evoked drives used in this example, rather, we only demonstrate its implementation. For those who want more background on the HNN model and the process used to articulate the proximal and distal drives needed to simulate evoked responses, see the `HNN ERP tutorial`_. The sequence of evoked drives presented here is not part of a current publication but is motivated by prior studies [1]_, [2]_. .. GENERATED FROM PYTHON SOURCE LINES 17-23 .. code-block:: default # Authors: Mainak Jas # Ryan Thorpe # sphinx_gallery_thumbnail_number = 2 .. GENERATED FROM PYTHON SOURCE LINES 24-28 First, we will import the packages needed for computing the inverse solution from the MNE somatosensory dataset. `MNE`_ can be installed with ``pip install mne``, and the somatosensory dataset can be downloaded by importing ``somato`` from ``mne.datasets``. .. GENERATED FROM PYTHON SOURCE LINES 28-35 .. code-block:: default import os.path as op import matplotlib.pyplot as plt import mne from mne.datasets import somato from mne.minimum_norm import apply_inverse, make_inverse_operator .. GENERATED FROM PYTHON SOURCE LINES 36-37 Now we set the the path of the ``somato`` dataset for subject ``'01'``. .. GENERATED FROM PYTHON SOURCE LINES 37-46 .. code-block:: default data_path = somato.data_path() subject = '01' task = 'somato' raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', 'sub-{}_task-{}_meg.fif'.format(subject, task)) fwd_fname = op.join(data_path, 'derivatives', 'sub-{}'.format(subject), 'sub-{}_task-{}-fwd.fif'.format(subject, task)) subjects_dir = op.join(data_path, 'derivatives', 'freesurfer', 'subjects') .. GENERATED FROM PYTHON SOURCE LINES 47-48 Then, we load the raw data and estimate the inverse operator. .. GENERATED FROM PYTHON SOURCE LINES 48-68 .. code-block:: default # Read and band-pass filter the raw data raw = mne.io.read_raw_fif(raw_fname, preload=True) l_freq, h_freq = 1, 40 raw.filter(l_freq, h_freq) # Identify stimulus events associated with MEG time series in the dataset events = mne.find_events(raw, stim_channel='STI 014') # Define epochs within the time series event_id, tmin, tmax = 1, -.2, .17 baseline = None epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=baseline, reject=dict(grad=4000e-13, eog=350e-6), preload=True) # Compute the inverse operator fwd = mne.read_forward_solution(fwd_fname) cov = mne.compute_covariance(epochs) inv = make_inverse_operator(epochs.info, fwd, cov) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Opening raw data file /home/ryan/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.fif... Range : 237600 ... 506999 = 791.189 ... 1688.266 secs Ready. Reading 0 ... 269399 = 0.000 ... 897.077 secs... Filtering raw data in 1 contiguous segment Setting up band-pass filter from 1 - 40 Hz FIR filter parameters --------------------- Designing a one-pass, zero-phase, non-causal bandpass filter: - Windowed time-domain design (firwin) method - Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation - Lower passband edge: 1.00 - Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz) - Upper passband edge: 40.00 Hz - Upper transition bandwidth: 10.00 Hz (-6 dB cutoff frequency: 45.00 Hz) - Filter length: 993 samples (3.307 sec) 111 events found Event IDs: [1] Not setting metadata 111 matching events found No baseline correction applied 0 projection items activated Using data from preloaded Raw for 111 events and 112 original time points ... 0 bad epochs dropped Reading forward solution from /home/ryan/mne_data/MNE-somato-data/derivatives/sub-01/sub-01_task-somato-fwd.fif... Reading a source space... [done] Reading a source space... [done] 2 source spaces read Desired named matrix (kind = 3523) not available Read MEG forward solution (8155 sources, 306 channels, free orientations) Source spaces transformed to the forward solution coordinate frame Computing rank from data with rank=None Using tolerance 1.5e-08 (2.2e-16 eps * 306 dim * 2.2e+05 max singular value) Estimated rank (mag + grad): 306 MEG: rank 306 computed from 306 data channels with 0 projectors /home/ryan/hnn-core/examples/workflows/plot_simulate_somato.py:65: RuntimeWarning: Something went wrong in the data-driven estimation of the data rank as it exceeds the theoretical rank from the info (306 > 64). Consider setting rank to "auto" or setting it explicitly as an integer. cov = mne.compute_covariance(epochs) Reducing data rank from 306 -> 306 Estimating covariance using EMPIRICAL Done. Number of samples used : 12432 [done] Converting forward solution to surface orientation No patch info available. The standard source space normals will be employed in the rotation to the local surface coordinates.... Converting to surface-based source orientations... [done] Computing inverse operator with 306 channels. 306 out of 306 channels remain after picking Selected 306 channels Creating the depth weighting matrix... 204 planar channels limit = 7615/8155 = 10.004172 scale = 5.17919e-08 exp = 0.8 Applying loose dipole orientations to surface source spaces: 0.2 Whitening the forward solution. Computing rank from covariance with rank=None Using tolerance 2e-12 (2.2e-16 eps * 306 dim * 29 max singular value) Estimated rank (mag + grad): 64 MEG: rank 64 computed from 306 data channels with 0 projectors Setting small MEG eigenvalues to zero (without PCA) Creating the source covariance matrix Adjusting source covariance matrix. Computing SVD of whitened and weighted lead field matrix. largest singular value = 2.42284 scaling factor to adjust the trace = 3.86104e+18 (nchan = 306 nzero = 242) .. GENERATED FROM PYTHON SOURCE LINES 69-77 There are several methods to do source reconstruction. Some of the methods such as MNE are distributed source methods whereas dipole fitting will estimate the location and amplitude of a single current dipole. At the moment, we do not offer explicit recommendations on which source reconstruction technique is best for HNN. However, we do want our users to note that the dipole currents simulated with HNN are assumed to be normal to the cortical surface. Hence, using the option ``pick_ori='normal'`` is appropriate. .. GENERATED FROM PYTHON SOURCE LINES 77-84 .. code-block:: default snr = 3. lambda2 = 1. / snr ** 2 evoked = epochs.average() stc = apply_inverse(evoked, inv, lambda2, method='MNE', pick_ori="normal", return_residual=False, verbose=True) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Preparing the inverse operator for use... Scaled noise and source covariance from nave = 1 to nave = 111 Created the regularized inverter The projection vectors do not apply to these channels. Created the whitener using a noise covariance matrix with rank 64 (242 small eigenvalues omitted) Applying inverse operator to "1"... Picked 306 channels from the data Computing inverse... Eigenleads need to be weighted ... Computing residual... Explained 86.1% variance [done] .. GENERATED FROM PYTHON SOURCE LINES 85-87 To extract the primary response in primary somatosensory cortex (S1), we create a label for the postcentral gyrus (S1) in source-space .. GENERATED FROM PYTHON SOURCE LINES 87-93 .. code-block:: default hemi = 'rh' label_tag = 'G_postcentral' label_s1 = mne.read_labels_from_annot(subject, parc='aparc.a2009s', hemi=hemi, regexp=label_tag, subjects_dir=subjects_dir)[0] .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Reading labels from parcellation... read 1 labels from /home/ryan/mne_data/MNE-somato-data/derivatives/freesurfer/subjects/01/label/rh.aparc.a2009s.annot .. GENERATED FROM PYTHON SOURCE LINES 94-105 Visualizing the distributed S1 activation in reference to the geometric structure of the cortex (i.e., plotted on a structural MRI) can help us figure out how to orient the dipole. Note that in the HNN framework, positive and negative deflections of a current dipole source correspond to upwards (from deep to superficial) and downwards (from superficial to deep) current flow, respectively. Uncomment the following code to open an interactive 3D render of the brain and its surface activation (requires the ``pyvista`` python library). You should get 2 plots, the first showing the post-central gyrus label from which the dipole time course was extracted and the second showing MNE activation at 0.040 sec that resemble the following images. .. GENERATED FROM PYTHON SOURCE LINES 105-115 .. code-block:: default ''' Brain = mne.viz.get_brain_class() brain_label = Brain(subject, hemi, 'white', subjects_dir=subjects_dir) brain_label.add_label(label_s1, color='green', alpha=0.9) stc_label = stc.in_label(label_s1) brain = stc_label.plot(subjects_dir=subjects_dir, hemi=hemi, surface='white', view_layout='horizontal', initial_time=0.04, backend='pyvista') ''' .. rst-class:: sphx-glr-script-out Out: .. code-block:: none "\nBrain = mne.viz.get_brain_class()\nbrain_label = Brain(subject, hemi, 'white', subjects_dir=subjects_dir)\nbrain_label.add_label(label_s1, color='green', alpha=0.9)\nstc_label = stc.in_label(label_s1)\nbrain = stc_label.plot(subjects_dir=subjects_dir, hemi=hemi, surface='white',\n view_layout='horizontal', initial_time=0.04,\n backend='pyvista')\n" .. GENERATED FROM PYTHON SOURCE LINES 116-119 |mne_label_fig| |mne_activity_fig| .. GENERATED FROM PYTHON SOURCE LINES 121-129 Now we extract the representative time course of dipole activation in our labeled brain region using ``mode='pca_flip'`` (see `this MNE-python example`_ for more details). Note that the most prominent component of the median nerve response occurs in the posterior wall of the central sulcus at ~0.040 sec. Since the dipolar activity here is negative, we orient the extracted waveform so that the deflection at ~0.040 sec is pointed downwards. Thus, the ~0.040 sec deflection corresponds to current flow traveling from superficial to deep layers of cortex. .. GENERATED FROM PYTHON SOURCE LINES 129-141 .. code-block:: default flip_data = stc.extract_label_time_course(label_s1, inv['src'], mode='pca_flip') dipole_tc = -flip_data[0] * 1e9 plt.figure() plt.plot(1e3 * stc.times, dipole_tc, 'ro--') plt.xlabel('Time (ms)') plt.ylabel('Current Dipole (nAm)') plt.xlim((0, 170)) plt.axhline(0, c='k', ls=':') plt.show() .. image-sg:: /auto_examples/workflows/images/sphx_glr_plot_simulate_somato_001.png :alt: plot simulate somato :srcset: /auto_examples/workflows/images/sphx_glr_plot_simulate_somato_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Extracting time courses for 1 labels (mode: pca_flip) .. GENERATED FROM PYTHON SOURCE LINES 142-144 Now, let us try to simulate the same with ``hnn-core``. We read in the network parameters from ``N20.json`` and instantiate the network. .. GENERATED FROM PYTHON SOURCE LINES 144-153 .. code-block:: default import hnn_core from hnn_core import simulate_dipole, jones_2009_model from hnn_core import average_dipoles, JoblibBackend hnn_core_root = op.dirname(hnn_core.__file__) params_fname = op.join(hnn_core_root, 'param', 'N20.json') net = jones_2009_model(params_fname) .. GENERATED FROM PYTHON SOURCE LINES 154-162 To simulate the source of the median nerve evoked response, we add a sequence of synchronous evoked drives: 1 proximal, 2 distal, and 1 final proximal drive. In order to understand the physiological implications of proximal and distal drive as well as the general process used to articulate a sequence of exogenous drive for simulating evoked responses, see the `HNN ERP tutorial`_. Note that setting ``n_drive_cells=1`` and ``cell_specific=False`` creates a drive with synchronous input across cells in the network. .. GENERATED FROM PYTHON SOURCE LINES 162-219 .. code-block:: default # Early proximal drive weights_ampa_p = {'L2_basket': 0.0036, 'L2_pyramidal': 0.0039, 'L5_basket': 0.0019, 'L5_pyramidal': 0.0020} weights_nmda_p = {'L2_basket': 0.0029, 'L2_pyramidal': 0.0005, 'L5_basket': 0.0030, 'L5_pyramidal': 0.0019} synaptic_delays_p = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_basket': 1.0, 'L5_pyramidal': 1.0} net.add_evoked_drive( 'evprox1', mu=21., sigma=4., numspikes=1, location='proximal', n_drive_cells=1, cell_specific=False, weights_ampa=weights_ampa_p, weights_nmda=weights_nmda_p, synaptic_delays=synaptic_delays_p, event_seed=276) # Late proximal drive weights_ampa_p = {'L2_basket': 0.003, 'L2_pyramidal': 0.0039, 'L5_basket': 0.004, 'L5_pyramidal': 0.0020} weights_nmda_p = {'L2_basket': 0.001, 'L2_pyramidal': 0.0005, 'L5_basket': 0.002, 'L5_pyramidal': 0.0020} synaptic_delays_p = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_basket': 1.0, 'L5_pyramidal': 1.0} net.add_evoked_drive( 'evprox2', mu=134., sigma=4.5, numspikes=1, location='proximal', n_drive_cells=1, cell_specific=False, weights_ampa=weights_ampa_p, weights_nmda=weights_nmda_p, synaptic_delays=synaptic_delays_p, event_seed=276) # Early distal drive weights_ampa_d = {'L2_basket': 0.0043, 'L2_pyramidal': 0.0032, 'L5_pyramidal': 0.0009} weights_nmda_d = {'L2_basket': 0.0029, 'L2_pyramidal': 0.0051, 'L5_pyramidal': 0.0010} synaptic_delays_d = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_pyramidal': 0.1} net.add_evoked_drive( 'evdist1', mu=32., sigma=2.5, numspikes=1, location='distal', n_drive_cells=1, cell_specific=False, weights_ampa=weights_ampa_d, weights_nmda=weights_nmda_d, synaptic_delays=synaptic_delays_d, event_seed=277) # Late distal drive weights_ampa_d = {'L2_basket': 0.0041, 'L2_pyramidal': 0.0019, 'L5_pyramidal': 0.0018} weights_nmda_d = {'L2_basket': 0.0032, 'L2_pyramidal': 0.0018, 'L5_pyramidal': 0.0017} synaptic_delays_d = {'L2_basket': 0.1, 'L2_pyramidal': 0.1, 'L5_pyramidal': 0.1} net.add_evoked_drive( 'evdist2', mu=84., sigma=4.5, numspikes=1, location='distal', n_drive_cells=1, cell_specific=False, weights_ampa=weights_ampa_d, weights_nmda=weights_nmda_d, synaptic_delays=synaptic_delays_d, event_seed=275) .. GENERATED FROM PYTHON SOURCE LINES 220-223 Now we run the simulation over 2 trials so that we can plot the average aggregate dipole. For a better match to the empirical waveform, set ``n_trials`` to be >=25. .. GENERATED FROM PYTHON SOURCE LINES 223-228 .. code-block:: default n_trials = 2 # n_trials = 25 with JoblibBackend(n_jobs=2): dpls = simulate_dipole(net, tstop=170., n_trials=n_trials) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Joblib will run 2 trial(s) in parallel by distributing trials over 2 jobs. .. GENERATED FROM PYTHON SOURCE LINES 229-236 Since the model is a reduced representation of the larger network contributing to the response, the model response is noisier than it would be in the net activity from a larger network where these effects are averaged out, and the dipole amplitude is smaller than the recorded data. The post-processing steps of smoothing and scaling the simulated dipole response allow us to more accurately approximate the true signal responsible for the recorded macroscopic evoked response [1]_, [2]_. .. GENERATED FROM PYTHON SOURCE LINES 236-242 .. code-block:: default dpl_smooth_win = 20 dpl_scalefctr = 12 for dpl in dpls: dpl.smooth(dpl_smooth_win) dpl.scale(dpl_scalefctr) .. GENERATED FROM PYTHON SOURCE LINES 243-245 Finally, we plot the driving spike histogram, empirical and simulated median nerve evoked response waveforms, and output spike histogram. .. GENERATED FROM PYTHON SOURCE LINES 245-257 .. code-block:: default fig, axes = plt.subplots(3, 1, sharex=True, figsize=(6, 6), constrained_layout=True) net.cell_response.plot_spikes_hist(ax=axes[0], spike_types=['evprox', 'evdist'], show=False) axes[1].axhline(0, c='k', ls=':', label='_nolegend_') axes[1].plot(1e3 * stc.times, dipole_tc, 'r--') average_dipoles(dpls).plot(ax=axes[1], show=False) axes[1].legend(['MNE label average', 'HNN simulation']) axes[1].set_ylabel('Current Dipole (nAm)') net.cell_response.plot_spikes_raster(ax=axes[2]) .. image-sg:: /auto_examples/workflows/images/sphx_glr_plot_simulate_somato_002.png :alt: Aggregate (L2 + L5) :srcset: /auto_examples/workflows/images/sphx_glr_plot_simulate_somato_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none
.. GENERATED FROM PYTHON SOURCE LINES 258-269 References ---------- .. [1] Jones, S. R., Pritchett, D. L., Stufflebeam, S. M., Hämäläinen, M. & Moore, C. I. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J. Neurosci. 27, 10751–10764 (2007). .. [2] Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hämäläinen M, Jones SR. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 9, e51214 (2020). https://doi.org/10.7554/eLife.51214 .. GENERATED FROM PYTHON SOURCE LINES 271-280 .. LINKS .. _MNE: https://mne.tools/ .. _HNN ERP tutorial: https://jonescompneurolab.github.io/hnn-tutorials/erp/erp .. _this MNE-python example: https://mne.tools/stable/auto_examples/inverse/plot_label_source_activations.html .. |mne_label_fig| image:: https://user-images.githubusercontent.com/20212206/106524603-cfe75c80-64b0-11eb-9607-3415195c3e7a.png :width: 400 .. |mne_activity_fig| image:: https://user-images.githubusercontent.com/20212206/106524542-b514e800-64b0-11eb-835e-497454e75eb9.png :width: 400 .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 17.461 seconds) .. _sphx_glr_download_auto_examples_workflows_plot_simulate_somato.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/jonescompneurolab/hnn-core/gh-pages?filepath=v0.3/notebooks/auto_examples/workflows/plot_simulate_somato.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_simulate_somato.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_simulate_somato.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_